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Key Points: 

● We built an extensive image database of modern planktonic foraminifera with high-
quality species labels, available on an online portal. 

● Using this database, we trained a supervised machine learning classifier that 
automatically identifies foraminifera with high accuracy. 

● Our database and machine classifier represent important resources for facilitating 
future paleoceanographic research using foraminifera. 

 
 
 
 
 
 
microfossil communities relevant to physical oceanographic processes and interconnected 
phenomena such as climate change. However, few resources exist to train students in the 
difficult task of discerning amongst closely related species, resulting in diverging taxonomic 
schools that differ in species concepts and boundaries. This problem is exacerbated by the 
limited number of taxonomic experts. Here, we document our initial progress towards 
removing these confounding and/or rate-limiting factors by generating the first extensive 
image library of modern planktonic foraminifera, providing digital taxonomic training tools 
and resources, and automating species-level taxonomic identification of planktonic 
foraminifera via machine learning using convolution neural networks. Experts identified 
34,640 images of modern (extant) planktonic foraminifera to the species level. These images 
are served as species exemplars through the online portal Endless Forams 
(endlessforams.org) and a taxonomic training portal hosted on the citizen science platform 
Zooniverse (zooniverse.org/projects/ahsiang/endless-forams/). A supervised machine 
learning classifier was then trained with ~27,000 images of these identified planktonic 
foraminifera. The best-performing model provided the correct species name for an image in 
the validation set 87.4% of the time, and included the correct name in its top three guesses 
97.7% of the time. Together, these resources provide a rigorous set of training tools in 
modern planktonic foraminiferal taxonomy and a means of rapidly generating assemblage 
data via machine learning in future studies for applications such as paleotemperature 
reconstruction and salinity indicator counting.  
 
Keywords: Planktonic foraminifera, global community macroecology, supervised machine 
learning, convolutional neural networks, marine microfossils, species identification 
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1 INTRODUCTION 
 
“When a young naturalist commences the study of a group of organisms quite unknown to 
him, he is at first much perplexed to determine what differences to consider as specific, and 
what as varieties, for he knows nothing of the amount and kind of variation to which a 
group is subject; and this shows, at least, how very generally there is some variation.” 

- C. Darwin, The Origin of Species, 1859, p. 50 
 
 The calcite tests of planktonic foraminifera provide a critical resource for 
paleoclimatological and paleoceanographic research as they are often analyzed, using a 
variety of geochemical techniques, to reconstruct fundamental values such as sea surface 
temperature, salinity, and atmospheric pCO2 (Schiebel et al., 2018; Kucera 2007), in addition 
to being analyzed quantitatively as an assemblage. In most geochemical applications, it is 
necessary to pick out specific species of a particular size range to control for known 
differences produced by depth habitat, seasonality, and symbiont ecology, among others, 
that influence the geochemical composition of planktonic foraminiferal calcite (Birch et al., 
2013; Edgar et al., 2017). Accurate identification of species is thus critical for generating 
reliable paleoceanographic and paleoclimatic information. 
 Accurate species identification is, however, a non-trivial task. Even among 
experienced workers, taxonomic agreement is achieved for only ~75% of individuals 
encountered (Fenton et al., 2018; Al-Sabouni et al., 2018). There are several reasons for this. 
Planktonic foraminifera have highly variable morphologies with near-continuous 
morphological gradations between closely related taxa (Aze et al., 2011; Poole & Wade, 
2019). In some cases, like the historic ‘pachyderma-dutertrei intergrade’ (Hilbrecht, 1997), 
genetic analysis has revealed the existence of pseudo-cryptic species between historically 
named morphological end-members (Darling et al., 2006). In other cases, morphological 
variation is unrelated to genetic differentiation (e.g., Trilobatus sacculifer; André et al., 
2013), and may simply reflect the standing morphological variation in a species or species 
complex. Regardless, this variation requires the practitioner to demarcate species at some 
point along a morphological continuum. As a result, the circumstances of one’s taxonomic 
training has a significant effect on the boundary conditions of the morphospace definition of 
a specific species that is used in practice. Different groups of taxonomists have developed 
different concepts for the morphological identity of species over time, with self-trained 
taxonomists having the most divergent opinions of species identity (Al-Sabouni et al., 2018). 
One potential reason for such diverging opinions is the limited number of published 
exemplar images for species in taxonomic references and online resources. 
 Here, we have generated the largest image database of modern planktonic 
foraminifera species to date through the combined efforts of more than twenty taxonomic 
experts. This unprecedented dataset is shared through several online portals with the aim of 
unifying taxonomic concepts and providing a shared taxonomic training tool. We then use 
supervised machine learning techniques to automate the identification of species from 
images. Supervised machine learning methods have previously been used to automate 
species identification for several microscopic taxa, including coccoliths (Beaufort & Dollfus, 
2004), pollen grains (Rodriguez-Damien et al., 2006; Gonçalves et al., 2016), phytoplankton 
(Sosik & Olson, 2007), hymenopterans (Rodner et al., 2016), diatoms (Urbánková et al., 
2016), and dipterans and coleopterans (Valan et al., 2019). However, these techniques have 
only been applied in a limited way (i.e., few species, low sampling, limited image variability 



 
© 2019 American Geophysical Union. All rights reserved. 

and scope, etc.) to modern planktonic foraminifera (Macleod et al., 2007; Ranaweera et al., 
2009; Zhong et al., 2017; Mitra et al., 2019), preventing their use as a general tool in this 
field. Computer vision provides a way to not only automate a task that relatively few 
researchers are trained to do (i.e., identify all species in a sample), but to also ensure a level 
of consistency and, at times, accuracy that can be difficult to achieve with human classifiers 
due to subjectivity and/or bias. 
 
2 BACKGROUND ON SUPERVISED MACHINE LEARNING 
 The field of computer vision involves training computers to parse the content of 
visual information and is a core aspect of many artificial intelligence applications such as 
facial recognition and medical image analysis. A common computer vision task is identifying 
objects in 2D images using a set of previously-identified images (i.e., a training set). The use 
of a training set in such tasks is called “supervised machine learning” and allows the 
computer to build a model of how an input (i.e., an image) maps to a categorical output (i.e., 
the identity or “class” of that image). To do this, the machine learning algorithm must 
determine what attributes of the input data are relevant for the prediction task at hand. 
This process is called feature extraction, and is a form of dimensionality reduction that 
transforms complex data into a set of explanatory variables that are grouped using similarity 
or distance metrics. The resulting model is called a “classifier”. The accuracy of a classifier is 
typically tested with a small set of known images, called a “test set” or “validation set”, 
before it is used to predict the identity of unknown images (i.e., to assign classes to new 
input objects). 
 Artificial neural networks (ANNs) are the key building block for modern computer 
vision systems. ANNs consist of a collection of “neurons” (i.e., nodes) and edges that 
connect these neurons. If there is a connection between two neurons, then the output of 
the first neuron serves as input for the second neuron. Every connection has an associated 
weight that signifies the relative importance of the input. A neuron performs a computation 
on the weighted sum of its inputs. This computation is known as an activation function – for 
instance, a commonly used activation function is the Rectified Linear Unit (ReLU), which 
applies the transformation f(x) = max(0,x) (equivalent to replacing negative values with 0). 
The output of the neuron is then passed along to the other neurons to which it is connected. 
The neural networks used in computer vision are generally feed-forward networks, whereby 
neurons are arranged in layers and all connections flow in a single (forward) direction. In 
other words, neurons in the same layer have no connections with one another. Instead, 
they only have connections with neurons in adjacent layers, receiving inputs from the 
preceding layer and sending outputs to the following layer. The most commonly used type 
of feed-forward ANN is the Multi-Layer Perceptron, also known as a fully-connected layer. 
As its name suggests, every neuron in a fully-connected layer has connections to every 
neuron in the preceding layer. 

The current best performing algorithms for feature extraction and image 
classification use convolutional neural networks (CNNs) (Krizhevsky et al., 2012; Hertel et al., 
2017). CNNs build upon ANNs by including layers that perform convolution operations, 
which serve to extract features from input images. Any image can be represented as a 
matrix of pixel values. Convolution operations use these pixel values to calculate new values 
using element-wise matrix multiplication with a small matrix (a.k.a. a “filter” or “kernel”) 
that sweeps over original image pixel values (Fig. 1). The sums of the element-wise 
multiplications (i.e., the dot product of the filter values and the pixel values of the portion of 
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the image the filter is currently placed over) then form the elements of a new matrix of 
convolved features (also known as an “activation map” or “feature map”). Examples of 
convolution operations include edge detection, sharpening, and blurring. As convolution 
operations are linear, a ReLU layer is usually applied following convolution in order to 
introduce non-linearity into the network. This step is important because a simple linear 
function is limited in its ability to capture complex mappings between the input (images) 
and output (classes). Although other non-linear activation functions exist, ReLU has been 
shown to perform better in most situations (Nair & Hinton, 2010). Following the convolution 
and ReLU layers are pooling layers that are used to perform downsampling (i.e., dimension 
reduction), removing extraneous features while retaining the most relevant information. 
Commonly used pooling operations include max pooling (whereby the highest value in a 
neighbourhood of pixels is retained and all others discarded) and average pooling (whereby 
the average of all values in a neighbourhood of pixels is calculated and retained).  

Combined, the convolution, ReLU, and pooling layers comprise the feature 
extraction portion of the CNN, producing as output the high-level features that are then 
used to perform classification. The values computed by the network are then processed 
using fully connected layers, generating a vector of probabilities reflecting the probability 
that a given image falls in  
any given class. This complete process (from input to feature extraction to classification) is 
known as forward propagation. 

The training set provides the CNN with known examples of the correct mapping 
between image values and weights, and the final classification (i.e., the true probability 
vector). When the CNN is initialized, all weights and filters are randomly assigned. The 
network then takes the input images and runs the first forward propagation step. As the 
weights and filters are random at this point, the output is a vector of random class 
probabilities for each image. The total error (i.e., the sum of the differences between the 
true probability vector and the output probability vector) is calculated. The network then 
performs backpropagation, which is the process of updating all the weights and filters using 
gradient descent in order to minimize the total error. One complete forward- and 
backpropagation of the entire dataset is called an epoch. Ideally, all images would be passed 
through the neural network at once to result in the most accurate backpropagation updates 
possible. However, in practice this is computationally intractable, and the data must be 
broken up into separate smaller batches to feed into the network. In general, the larger the 
batch size, the better. However, the maximum batch size is limited by the amount of 
memory available to hold all of the data at once. The number of batches required to 
complete a single epoch is called the number of iterations. For example, a dataset 
containing 1,000 images could be split into five batches of 200 images. Training a CNN using 
this dataset would then take five iterations to complete one epoch. The number of epochs 
required to adequately train a network is variable and depends on the characteristics of the 
dataset and the parameters associated with the gradient descent algorithm being used. 

By updating weights and kernels in the backpropagation to reduce classification 
error, the network learns how to accurately classify the training images, building an 
association between a particular collection of weights and kernels and a particular output 
class. The best-performing model is then used to classify the images in the validation 
dataset. The performance of the model on the validation set thus gives us an idea of how 
well the model performs, and what sort of accuracies we might expect if the model was 
used to classify entirely novel images. Model performance is evaluated by looking at 
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validation accuracy (i.e., the proportion of images in the validation set that are correctly 
identified by the trained model) and validation loss (i.e., the sum of errors for each image in 
the validation set, where error is determined by a loss function such as cross-entropy [see 
Supplementary Information Section S2]). 

The 16-layer VGG16 (named after the Visual Geometry Group at Oxford University) 
CNN (Simonyan & Zisserman, 2014) is a commonly used image classification neural network. 
Although VGG16 is a relatively shallow network, its development was critical in showing 
that, in general, the deeper a neural network (i.e., the more layers it contains), the more 
accurate its performance. However, training difficulty and computational costs (i.e., time) 
increase with neural network depth. Residual Networks (ResNets; He et al., 2015) and 
Densely Connected Convolutional Networks (DenseNets; Huang et al., 2016) are state-of-
the-art CNNs that have helped alleviate this computational cost and improve performance. 
ResNets and DenseNets containing hundreds of layers are now possible. However, no 
algorithm is universally ideal for all machine learning problems (Wolpert & Macready, 1997). 
A certain amount of experimentation with algorithm choice is thus a necessity. Training 
deep CNNs also requires extremely large amounts of data to meaningfully infer values for 
the large number of model parameters (and, correspondingly, computational resources). As 
a result, deeper networks may not necessarily be preferable for all problems. 

One technique that eases computational burden and allows for robust models to be 
trained using relatively small datasets is called transfer learning. Transfer learning uses 
weights from a model previously trained using another dataset on a new task; these weights 
are “frozen” in the new model so that they are not trainable, thus reducing the number of 
parameters that must be estimated. New images are then used only to train the unfrozen 
layers at the end of the CNN in order to fine-tune the model to the task at hand. This can be 
an efficient and effective strategy when one does not have a very large dataset with which 
to train a convolutional neural network from scratch. For example, ImageNet, which 
contains over 14 million images of various objects and activities, has been used to train 
many CNNs, and the resulting weights are freely available. Transfer learning thus allows 
accurate models to be trained with hundreds to thousands, rather than millions, of images. 

In this study, we generate a large image dataset of planktonic foraminifera with 
associated high-quality species labels assigned by taxonomic experts. We then use these 
data to train a supervised machine learning classifier using deep CNNs that is able to 
automatically identify planktonic foraminifera with high accuracies that are comparable to 
those of human experts. 
 
 
3 METHODS 
 Planktonic foraminiferal images were obtained from two large databases: a North 
Atlantic coretop collection from the Yale Peabody Museum (hereafter, YPM Coretop 
Collection) and the Henry A. Buckley collection from the Natural History Museum, London 
(hereafter, Buckley Collection). 
 
3.1 Species identification of the YPM Coretop Collection 
 The YPM Coretop Collection is a dataset of 124,230 object images collected by Elder 
et al. (2018) from the ≥150 µm size fraction of 34 Atlantic coretop samples. Of these objects, 
61,849 were identified as complete or damaged planktonic foraminifera by human 
classifiers. To identify these images to the species level, we used the online platform 
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Zooniverse to create a private portal for taxonomic experts to identify images. As several 
taxonomies exist for extant planktonic foraminifera, we standardized the species list by 
using the SCOR/IGBP Working Group 138 taxonomy (Hottinger et al., 2006). Further details 
regarding the Zooniverse interface and data collection are available in the Supplementary 
Information. 
 To collect statistics on classifier accuracy and avoid inaccurate labels resulting from 
single-user errors, four independent taxonomists classified each image before it was 
considered complete. Classifiers were required to identify each image they encountered. 
They were not permitted to respond with “I don’t know” and were advised to not skip 
images (although this was possible by refreshing the page). This is because the 
classifications themselves made difficult-to-classify individuals apparent, as the truly 
unidentifiable individuals were unlikely to be called the same thing by four independent 
experts. Additionally, even uncertain responses can provide useful information. For 
example, if the three labels assigned to an individual were “Globigerinoides ruber”, 
“Globigerinoides elongatus”, and “Globigerinoides conglobatus”, it is very likely that the 
individual belongs to the genus Globigerinoides, although the exact species identity of the 
individual is ambiguous. 
 An email was sent to the planktonic foraminiferal community to invite self-identified 
experts to the project. A total of 24 taxonomists submitted at least one classification and of 
these, 16 submitted more than 5,000 classifications and are co-authors on this manuscript. 
In sum, 140,616 unique classifications were collected on the 40,000 unique images 
uploaded. The raw data was processed to determine how many objects received four 
independent classifications, and what degree of agreement existed between the 
independent object classifications. All objects with 75% agreement or higher were 
considered to have high-quality classifications and were retained for convolutional neural 
network training and validation. The final set of YPM Coretop Collection images with high-
quality species labels includes representatives from 34 species and comprises a total of 
24,569 individuals. 
 
3.2 Species identification of the Buckley Collection 
 We included images of planktonic foraminifera from the Henry A. Buckley collection 
at the Natural History Museum in London, which includes samples from various localities 
worldwide, primarily from the Pacific, Atlantic, and Indian oceans (see Rillo et al. [2016] for 
details regarding the Buckley specimens). A total of 1,355 slides containing identified 
modern specimens were segmented using AutoMorph (Hsiang et al., 2017; available at 
https://github.com/HullLab/AutoMorph) for inclusion in the machine learning dataset. All 
slides were segmented using an object size range of 50-800 pixels, and a test threshold 
value range of 0.5-0.7, incremented by 0.01, resulting in thirty segmentations per slide. The 
segmentation results were examined by eye to determine the ideal threshold value that 
maximizes the number of correctly identified foraminifera and minimizes the number of 
spurious objects segmented by the algorithm. A total of 17,383 objects were segmented out 
of the 1,355 modern slides. 

After segmentation, A.B. and M.C.R. examined all segmented objects using a 
modified version of the Specify software (Hsiang et al., 2016) in order to: 1) flag spurious 
identified objects for removal (usually bits of background or slide labels), and 2) mark 
whether the original species identification provided by Buckley matched modern species 
concepts unambiguously. Objects for which both A.B. and M.C.R. agreed with Buckley’s 
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original label were retained for the final image dataset, resulting in a total of 10,071 images. 
For certain species, Buckley used antiquated names that mapped unambiguously onto 
modern synonyms; these names were updated to follow the SCOR taxonomy (Table S1), and 
the species images were included in the final dataset. The final Buckley dataset includes 
representatives from 31 species, two of which (Globigerinella adamsi and Tenuitella iota) 
are not found in the YPM dataset. 
 
3.3 Supervised machine learning 

Following convention, we withheld 20% of the combined YPM + Buckley dataset as a 
test dataset (i.e., validation set), with the remaining 80% used for training. For the YPM 
dataset, 20% of the dataset had already been designated as withheld objects during dataset 
creation (see Elder et al., 2018). We used this list to split those images with high-quality 
species labels into a test set (i.e., all images with originally “withheld” object IDs) and a 
training set. This resulted in 4,889 test objects and 19,680 training objects (24,569 objects 
total). For the Buckley dataset, 20% of the 10,071 images (2,014 total) were randomly 
selected to be part of the test set. The remaining images (8,057 total) comprised the 
training set. We then merged the YPM and Buckley datasets. This merged dataset contains 
34,640 images total, with a training set of 27,737 images and a test set of 6,903 images. A 
total of 35 species (+1 “Not a planktonic foraminifer” option) are represented. Table S2 
contains a breakdown of the number of representatives by species in the training set. Our 
sampling represents ~73% coverage of the 48 total species defined in the SCOR taxonomy, 
with the missing species being either extremely rare or typically smaller than the size 
fraction imaged and classified here. 

We initially tested three convolutional neural networks: VGG16 (Simonyan & 
Zisserman, 2014), DenseNet121 (Huang et al., 2016), and InceptionV3 (Szegedy et al., 2015). 
These CNNs are commonly used neural networks for image classification. We used the 
implementation of these CNNs from the Keras Python API (Chollet et al., 2015) using the 
GPU-enabled TensorFlow (Abadi et al., 2016) backend. Details on all model structures and 
analysis parameters can be found in section S2 of the Supplementary Information. Table 1 
summarizes all supervised machine learning analyses that were run. Treatments and 
parameter values were optimized iteratively, with the optimally performing value retained 
from each testing cycle for the next. For instance, we first tested the effect of image size on 
accuracy by holding all other treatments and parameter values constant (analyses 1-3 in 
Table 1). As an image size of 160 x 160 pixels yielded the highest validation accuracy, we set 
the image size to 160 x 160 pixels for all remaining analyses. We performed these tests in 
the following order: image size, dropout, learning rate, L1/L2 regularization, augmentation, 
and batch size (see Supplementary Information Section S2). For the final analyses, we also 
increased the patience value of the early stopping algorithm to 10. All analyses were run on 
the Beella machine in the Hull Lab in the Department of Geology & Geophysics department 
at Yale University (6-core 2.4GHz CPU, 32 GB RAM, 2 NVIDIA GeForce GTX 1080 GPUs [8 GB], 
Ubuntu 15.04.5 LTS). The code for the machine learning analyses is available on GitHub at 
https://www.github.com/ahsiang/foram-classifier. 
 
3.4 Taxonomic training tools and resources 
 The 32,626 training set images are available through the website Endless Forams 
(endlessforams.org). This website was designed to deliver as many species examples as a 
user requests, up to the total number of images available for a species, for taxonomic 
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training purposes. By looking at many, or all, of the images available for any given species, 
researchers will be able to gain an understanding of the extent of morphological variability 
that is generally accepted amongst taxonomists within any given species. We have also 
designed an extensive taxonomic training portal (available at endlessforams.org) for 
workers that utilizes the training set images. Users can then use the public-facing Zooniverse 
portal (zooniverse.org/projects/ahsiang/endless-forams) to participate in classifying the 
>14,000 remaining unclassified planktonic foraminifera images from the YPM Coretop 
Collection. Because this new Zooniverse portal is public-facing, all images require 15 
identifications before being retired and considered fully “classified.” The portal will be 
monitored regularly, and any retired images with <75% agreement will be re-uploaded to 
the portal, until eventually the only images left in the portal will be the truly ambiguous, 
unclassifiable objects. 
 
 
4 RESULTS 
 
4.1 Expert species identification 

A total of 34,067 images were fully identified (i.e., four classifications obtained) from 
the YPM Coretop Collection, of which 1,604 (4.71% of the total) had 0% agreement (i.e., all 
four identifiers disagreed on the species identification), 7,894 (23.17%) had 50% agreement, 
9,578 (28.12%) had 75% agreement, and 14,991 (44.00%) had 100% agreement. This 
resulted in a dataset of 24,569 unique images (72.12% of the total dataset) with high-quality 
labels (i.e., three or four of four identifiers agreed on the classification), representing 34 
species. A human confusion matrix (Fig. 2) was generated using the objects with high-quality 
labels by summing the number of identifications for each of the 34 species and determining 
the proportion of the identifications are correct or incorrect. For instance, the final dataset 
contained 343 images that were identified as Globigerinoides elongatus. These images 
required a total of 1,372 identifications (=343 × 4), of which 81% were the “correct” 
identification (that is, G. elongatus). The remaining 19% of identifications were incorrect, 
with most being G. ruber (18%) and the rest being G. conglobatus (1%). In general, most of 
the classifications are correct, with accuracy rates ranging from 75-98% (average accuracy: 
85.9%), as only those individuals with 75% agreement or more were considered “identified”. 
Species with accuracy rates ≤80% were relatively rare in the dataset as well: Globigerinella 
calida: 78% accuracy, 135 individuals; Globigerinita uvula: 75%, 7 individuals; Globorotalia 
ungulata: 80%, 31 individuals; Globorotaloides hexagonus: 75%, 2 individuals; 
Globoturborotalita tenella: 78%, 107 individuals; Globoquadrina conglomerata: 75%, 1 
individual). In most cases, misidentifications occurred within the same genus, although 
these misidentifications are not necessarily symmetrical. For instance, while G. elongatus is 
misidentified as G. ruber 18% of the time, the reverse happens only 5% of the time. 
 Table S3 shows anonymized user accuracy rates. The range for user accuracies of 
high-quality labels (i.e., the proportion of ‘correct’ labels each user contributed, for all 
objects with 75% or 100% agreement) was 63.8-85.2%.  
 
4.2 Supervised machine learning model training 
 Although we began by testing the VGG16 (analysis #1 in Table 1), InceptionV3 
(analysis #24), and DenseNet121 (analysis #25) CNN architectures, it quickly became clear 
that the latter two networks were affected by strong overfitting, as the validation accuracy 
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was always significantly lower than the training accuracy. Due to these preliminary results, 
we decided to move forward with the VGG16 CNN, as it does not experience the same 
degree of model overfitting that we observed with DenseNet121 and InceptionV3 and also 
exhibited the highest initial validation accuracy (78.96%). 
 Our results show a positive effect of image size on validation accuracy at low pixel 
counts (analyses #1-4 in Table 1) with validation accuracy increasing from 78.96% at 64 x 64 
pixels to 84.77% at 160 x 160 pixels. As training accuracy, training loss, and validation loss do 
not improve appreciably between an image size of 124 x 124 pixels vs. 160 x 160 pixels, we 
chose to cap the image size at 160 x 160 pixels, as increasing image size requires a 
corresponding increase in memory usage and processing time. Next, we tested the effect of 
adding dropout regularization with different dropout proportions (analyses #5-8). The best 
performing analysis had a dropout value of 0.5, which resulted in a validation accuracy of 
85.59%. For the learning rate tests (analyses #9-11), a relatively high learning rate of 0.01 
resulted in the lowest validation accuracy (72.80%). As the lower learning rates of 1.0 x 10-5 
and 5.0 x 10-5 did not result in higher validation accuracies than the intermediate rate of 1 x 
10-4, we retained an intermediate rate for the following analyses, as low learning rates can 
lead to slow convergence. L1/L2 regularization (analyses #12-15) also did not improve 
validation accuracies, and in fact a lambda value of 0.01 resulted in a precipitous drop in 
both training and validation accuracy (21.40% and 22.93%, respectively). We thus chose to 
proceed without the use of L1/L2 regularization. 

We compared data augmentation using five vs. two treatments (analyses #16-17), 
and found that while the two-treatment method performed better than the five-treatment 
method (validation accuracy of 84.36% vs. 82.35%), neither resulted in substantially 
increased validation accuracy than the analyses without data augmentation. Because data 
augmentation is a form of regularization, it can sometimes lead to underfitting when used in 
combination with other regularization techniques such as dropout and L1/L2 regularization. 
As such, we also tested the effect of the two-treatment data augmentation without the 0.5 
dropout layer (analysis #18). However, this resulted in a lower validation accuracy of 
81.07%. We thus decided to retain the dropout regularization without the data 
augmentation, as dropout appears to have the greatest effect in reducing overfitting in our 
dataset. We then tested a self-adjusting learning rate and found that it led to a significantly 
improved validation accuracy of 87.32% in the 0.5 adjustment factor case (analysis #20). 
Finally, we found that increasing the batch size to 200 and 250 (analyses #21-22) led to 
relatively high validation accuracies (>85%) and very high training accuracies (>99%) and low 
loss (6.0 x 10-4 – 2.0 x 10-3). The final analysis (#23) combining the best performing settings 
resulted in a training accuracy of 99.99%, a training loss of 3.0 x 10-4, a validation accuracy of 
87.41%, and a validation loss of 0.5638. We also calculated the proportion of objects for 
which the correct species identity is found within the top three guesses made by the model 
(i.e., the top-3 accuracy), and found a last run top-3 training accuracy of 100% and a top-3 
validation accuracy of 97.66%. Figure 3 shows the evolution of all these metrics through the 
44 epochs that this final analysis was trained. The final model weights, along with the code 
used for training and validation, can be accessed at 
https://www.github.com/ahsiang/foram-classifier. 
 The machine confusion matrix is shown in Figure 4. Some differences in the general 
pattern of misidentifications between the machine and human confusion matrices present 
themselves. While the human misidentifications tend to be phylogenetically conservative 
(i.e., when individuals are misidentified, they are usually misidentified as another species 
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from the same genus), the misidentifications by the machine are more liberal – for instance, 
21% of the validation specimens of Globigerinella calida are misidentified as Globigerina 
falconensis. The model tended to confuse species in this manner when they have relatively 
low sampling: the average training sample size of species with validation accuracies <70% is 
130, compared with an average training sample size of 1,184 for those species with 
validation accuracies >70%. The accuracy of human classifiers vs. the machine model on the 
validation set for each species is shown in Figure 5A-B. 

Another interesting result is that Globorotalia ungulata is correctly identified by the 
machine only 33% of the time, and mistaken as Globorotalia menardii the other 67% of the 
time. It is the only species that is always misidentified as a single alternate species at a 
greater frequency than it is correctly identified. Human identifiers also commonly 
misidentify G. ungulata as G. menardii (18% misidentifications), and the machine is likely 
further misled due to the much larger set of training images for G. menardii than for G. 
ungulata (1,090 vs. 25; see Discussion on the class imbalance problem, below). 
 
 
5 DISCUSSION 
 
5.1 Building and mobilizing large-scale taxonomic resources 
 Zooniverse was an effective platform for obtaining taxonomic identifications on 
digital images from experts. Given the paucity of images available for planktonic 
foraminiferal species, it is noteworthy that this project generated >34,000 identifications in 
just three months. Large-scale digital mobilization efforts like this one provide one means of 
capturing our community expertise for training the next generation of scientists and for 
automating some aspects of our work. As we show below, once generated, large-scale data 
products such as these can be used to automate future classification tasks through machine 
learning. The portals we provide for both the raw images (endlessforams.org) and 
taxonomic training (zooniverse.org/projects/ahsiang/endless-forams) are targeted towards 
increasing the expertise and consistency of single (or limited)-taxon experts (e.g., many 
geochemists), as well as taxonomists, by illustrating the range of variation accepted in each 
species concept (Fig. 6) and providing a common benchmark to reduce differences amongst 
taxonomic schools. 
 In general, we would repeat the same portal design for future projects with the 
following exceptions. Given the difficulty of taxonomic identification from digital images 
(i.e., taxonomists like to rotate specimens to see key taxonomic features), partial occlusion 
by sediment or poor preservation made species-specific identification very difficult. 
Methods for dealing with poor preservation in the context of digital data mobilization 
include filtering out poorly-preserved samples or sites or classifying at the generic rather 
than species level. We also had remixing in some samples, and because we did not include a 
“remixed” option for classifiers, experts were forced to assign modern names to ancient 
taxa in these instances. A “remixed” option, along with the existing “Not a planktonic 
foraminifer” option, will be included in all future studies. 

The human by-user accuracy rates that we observe (63.8-85.2%; average 71.4%) are 
well in line with those reported by previous studies on the performance of human classifiers 
on large-scale taxonomic identification tasks. In a study on species identification of six 
species of Dinophysis dinoflagellates, Culverhouse et al. (2003) report an average accuracy 
rate of 72% amongst 16 taxonomic experts. A study examining expert vs. non-expert 
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performance on species identification in bumblebees found accuracy rates of below 60% for 
both groups (Austen et al., 2016). Finally, Al-Sabouni et al. (2018) report average accuracies 
of 69% (>125μm size fraction) and 77% (>150μm size fraction) in a study of 21 experts 
identifying 300 planktonic foraminifera specimens from slides, with a 7% drop in accuracy 
between slides and digital photos. The high level of accuracy found by Al-Sabouni et al. is 
notable, given the widely-held perception that planktonic foraminifera have intergrading 
morphologies. In contrast, Mitra et al. report classification performances for six experts (>15 
years of experience) and novices (0.5-2 years of experience) identifying 540 specimens and 
find F1 scores (harmonic mean of precision and recall) of 39-85% (mean 63%) for experts 
and 47-64% (mean 53%) for novices. The relatively lower accuracies reported by Mitra et al. 
may result from the option classifiers were given to choose ‘Not Identifiable’, which may 
cause conservative classifiers to avoid making decisions if they are uncertain, leading to 
depressed recall rates (i.e., more false negatives). Furthermore, as the original identities of 
the images used by Mitra et al. were determined by only a single expert, the accuracy rates 
are dependent on the accuracy of this original expert. The ‘true’ identities of the specimens 
used in our study are determined from the aggregate classifications of four independent, 
random classifiers per specimen. As these experts may have differing species concepts, we 
can be reasonably certain in identifications that have ≥75% agreement, because the 
majority of experts agree on the identity despite these differing species concepts. In 
contrast, a single expert has only a single species concept, and thus may assign identities 
that would reasonably be contradicted by another expert with a slightly different species 
concept (e.g., different experts may draw the line at a different point along an intergrading 
morphological continuum). However, the converse can also be true.  Some species may only 
be reliably identified by a few core experts in the field, but commonly misidentified by most 
practitioners. In these cases, our approach of naming by consensus would bias the ‘extreme-
specialist’ species towards being misidentified. We noticed, for instance, that there are a 
number of images classified as Globigerina bulloides that should be listed as Globigerina 
falconensis. G. falconensis is, however, much rarer and is therefore not as well-known to 
even the expert taxonomists. Furthermore, the unequal distribution of identifications across 
experts (i.e., certain experts identifying significantly more objects than others) could 
potentially introduce biased representation of species concepts in the dataset. However, 
using consensus among aggregate identifications serves as a first-order buffer against such 
biases and should be the standard for generating identification data of this kind moving 
forward. 

5.2 Human vs. machine classification 
 We find that human misidentifications (Fig. 2) are almost always asymmetrical, with 
a bias towards species with higher representation in the dataset. For instance, both 
Globorotalia tumida (70 individuals) and G. ungulata (31 individuals) are most often 
misidentified as G. menardii (309 individuals), with misidentification rates of 8% and 18%, 
respectively. The reverse, where G. menardii is mistaken as G. tumida or G. ungulata, 
happens less often (5% and 3%, respectively). While there is not a linear relationship 
between accuracy rate and individuals sampled (Fig. 5C), there is a very strong correlation 
(R2 = 0.996; p < 2.2 × 10-16) between the number of representative samples of a species and 
the number of misidentifications that fall under that species (Fig. 5E). That is, 
Globigerinoides ruber, which has the most individuals sampled (6,425), is also the species 
that other species are most likely to be misidentified as – in this case, there were 24,202 
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identifications of other species that were misidentified as G. ruber. There are several 
possible causes for the relatively lower accuracy rates of undersampled species, including: 

1. Higher representation leads to increased recognizability. That is, the expert 
human classifiers in our study are likely to be better at identifying common 
species due to the depth of their experience identifying these species in the past. 
If there are many representatives of a species, people will have a well-developed 
concept of what variation looks like within the species and will thus be more 
proficient at identifying it from images. In contrast, for rare species, the human 
classifier may simply have had few or no encounters with these species in the 
past and fail to recognize the species as distinct from a close relative, or be 
unable to rectify a recognized knowledge gap from the limited number of images 
and views available from taxonomic resources.  

2. Higher representation leads to identification bias. In other words, if human 
classifiers have seen many more of Globigerinella siphonifera in the dataset, they 
are more likely to identify G. calida as G. siphonifera than vice versa. This may 
also happen as a result of human knowledge about background meta-data. For 
instance, if classifiers have a preconceived idea that G. siphonifera is more 
abundant in the dataset than G. calida, this may lead them to preferentially 
identify individuals as G. siphonifera.  

3. There is less native taxonomic clarity for undersampled forms. In other words, 
rare taxa are more likely to resemble other more abundant species, than 
abundant species are to resemble each other, for biological reasons such as 
cryptic speciation. 

4. Rare species that are the result of recently defined splits in taxonomic 
boundaries may be difficult to separate from their “parent” species. For instance, 
G. elongatus was reinstated as a taxon in 2011 (Aurahs et al.), whereas 
previously it had been grouped under G. ruber sensu lato. Classifiers who were 
trained prior to the reinstatement would thus likely classify G. elongatus 
individuals as G. ruber. In this particular case, the problem is also amplified by 
the ambiguity of the line between G. elongatus and G. ruber, as they form an 
intergrading species plexus (Bonfardeci et al., 2018). Furthermore, the more 
elongate spiral on the dorsal side that is often used to diagnose G. elongatus vs. 
G. ruber is not always visible in images taken from the umbilical side, as is the 
case with the YPM and Buckley images used here. 

 
Discriminating between these possible causes is beyond the scope of this study. However, 
the strong correlation between the number of sampled individuals per species and the 
number of identifications misattributed to that species that we observe suggests that 
sampling-dependent identification bias likely plays a role. 
 Interestingly, an analogous problem occurs when using machine learning methods. 
The machine equivalent of sampling-dependent human identification bias is the unbalanced 
data or class imbalance problem, whereby the numbers of representative samples in each 
class are highly skewed (i.e., certain classes have thousands of images and others have only 
a handful). Highly skewed datasets can lead to inductive bias that favors the more highly 
sampled classes, leading to poor predictive performance on the less well-sampled minority 
classes (He & Garcia, 2009). Oversampling, which involves randomly replicating samples 



 
© 2019 American Geophysical Union. All rights reserved. 

from minority classes, is one of the most common techniques for dealing with class 
imbalance. While oversampling can lead to problems with overfitting in classical machine 
models, some studies suggest that this largely does not affect modern CNNs (Buda et al., 
2018). More advanced techniques such as Class Rectification Loss (Dong et al., 2018) have 
also been developed to deal with the class imbalance problem. The dataset we used for 
training the CNN here is highly skewed (Fig. S2), with the most abundant class having 5,914 
samples and the least abundant class having 4 samples. Similar to the human classifiers, 
there is not a linear relationship between the number of species samples and accuracy (Fig. 
5D). However, when we look at the relationship between sampling and misidentification, we 
find that the correlation between the two is less pronounced than in the human 
identifications, with an R2 value of only 0.668 (p = 1.253 × 10-9; Fig. 5F). These results 
suggest that the machine classifier suffers less from sampling and identification bias than 
human classifiers do. However, the average of all the single-species accuracies (i.e., the 
proportion of correct identifications for a given species) is lower for the machine model 
(70.0%) than the human classifiers (86.2%), due to the low accuracies returned for the 
undersampled species. Given that there is a high correlation between human classification 
performance and sample size, it is likely that larger sample sizes would improve these 
accuracies. That is, if humans are themselves poor at identifying rare species, then the 
human-generated data used to train the machine may be themselves of relatively poor 
quality (i.e., the “garbage in, garbage out” principle). Our results suggest that larger samples 
lead to more robust species concepts in human classifiers, which would in turn lead to 
higher quality data, and thus higher machine accuracies. 

The advantage of the machine approach thus lies in its high accuracy, reproducibility, 
and bias avoidance. Human accuracies are highly dependent on individual performance, and 
often in immeasurable ways. For instance, Austen et al. (2018) found that self-reported user 
ability and experience had no correlation with actual performance in classification in the 
identification of bumblebees. Similarly, Al-Sabouni et al. (2018) find that increased 
experience does not correspond with higher user identification accuracies in planktonic 
foraminifera. Austen et al. also noted that experts with field experience tended to have 
higher identification accuracies than those who had gained their taxonomic knowledge 
primarily from books, a finding that recapitulates Culverhouse et al.’s (2003) report that, in a 
test of distinguishing between the dinoflagellates Ceratium longipes and C. arcticum, self-
consistency rates are much higher for ‘competent’ experts (94-99%) vs. ‘book’ experts (67-
83%), although the naming of these categories does suggest a certain bias in the authors. 
Dinoflagellate expert consistency ranged widely from 43% to 95% across eight experts. In 
contrast, the consistency of the Dinoflagellate Categorisation by Artificial Neural Network 
(DiCANN) system for the same task was 99%. Similarly, the overall accuracy rate of our best-
performing model in this study is already higher than the highest individual human 
participant’s accuracy (i.e., 87.4% vs. 85.2% of images encountered were correctly classified 
by the model vs. human classifiers, respectively), even though we use primarily ‘out-of-the-
box’ methods packaged in the Keras framework. Higher validation accuracies are thus likely 
with more sophisticated approaches (e.g., pre-defined kernels, changing image size during 
training, fully convolutional networks, etc.) in future studies. 

Our results suggest that human classifiers tend to be more phylogenetically 
conservative in their mistakes, with most mistaken identifications occurring within the same 
genus as the correct identification. In contrast, the mistakes made by the machine classifier 
often fall outside of the correct genus. However, it appears that these mistakes are often 
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not completely random when considered in a phylogenetic and/or taxonomic context. For 
instance, 18% of the G. calida specimens were identified as Globigerinella siphonifera, which 
G. calida is thought to have evolved from (Kennett & Srinivasan, 1983; Aze et al., 2011). 
Additionally, both Tenuitella iota and Turborotalita humilis are often confused by the model 
for Globigerinita glutinata (33% and 31%, respectively). However, G. glutinata likely 
descended from Tenuitella munda in the lower Oligocene (Jenkins, 1965; Jenkins & 
Srinivasan, 1986; Pearson et al., 2018). In Parker’s (1962) original description, T. iota was 
placed in the Globigerinita genus. It thus appears that, although the model is prone to 
misidentifying species when it has only a small training set to work from, its 
misidentifications are often biologically and/or taxonomically relevant, grouping 
morphotypes that taxonomic experts have pondered over themselves. The Parker 1962 
taxonomy was built on the basis of relatively little information due to technological 
limitations. For instance, modern SEM methods were applied to planktonic foraminifera for 
the first time by Honjo and Berggren (1967), and later developments along these lines 
(Steineck & Fleisher, 1978) led to the establishment of test wall texture as an important 
criterion for taxonomic identification. This additional information allowed taxonomists to 
clarify some of these ambiguous species boundaries. The biologically-relevant mistakes 
made by the machine classifier may thus be seen as analogous to those made in pre-SEM 
taxonomies, resulting from limitations in the training dataset. Future work exploring the 
type, quality, and composition of the training data will likely lead to further gains in the 
accuracy rate of automated classifiers. 

The particular advantage in the machine approach is that it is highly portable, 
reusable, and scalable. A model can be trained anywhere – say, at an institution with a large 
collection of specimens that can be digitized and identified – and then deployed anywhere 
in the world. Furthermore, once the hard work of training a model is done, using that model 
to predict labels for a novel batch of images is relatively trivial in terms of computational 
resources and time. The machine approach thus effectively removes the bottleneck of 
needing a team of taxonomic experts to identify specimens before downstream analyses 
can be done. Of course, the taxonomic experts are still necessary to generate the high-
quality training data for the models. However, where a robust model trained using expert-
generated data exists, institutions and individuals without access to taxonomic expertise can 
potentially conduct research that requires taxonomic information. The other obvious 
advantage to automated machine methods is the ability to generate taxonomic information 
for very large datasets very quickly, which is a growing necessity as high-throughput imaging 
methods continue to advance. 
 
5.3 Machine learning implementation considerations specific to biological taxonomy and 
systematics 
 Most applications of supervised image classification to date focus on non-biological 
problems, such as real-time object discrimination for building autonomous driving systems, 
or recognizing handwritten letters and numbers. Most biological applications are in the field 
of medicine and disease diagnosis. The use of automated computer vision methods for 
taxonomic tasks such as species identification has unique considerations, a few of which we 
touch upon here. 
 Although data augmentation did not appreciably increase our accuracy rates in this 
study, it is a commonly used strategy in supervised image classification, particularly when 
the training dataset is small. However, data augmentation must be implemented carefully 



 
© 2019 American Geophysical Union. All rights reserved. 

with regard to the classification task being performed. For instance, a common data 
augmentation treatment to implement is horizontal flipping. However, this can potentially 
cause problems when attempting to classify organisms that demonstrate chirality. While 
chirality is irrelevant when training a model to distinguish between, say, cats and dogs, it 
can be an important distinguishing trait when training a model to distinguish between highly 
similar forms that differ in coiling direction, such as Neogloboquadrina pachyderma vs. N. 
incompta (Darling et al., 2006). Similar issues occur when training models to classify written 
letters – for example, certain Arabic letters can be confused by rotation or flipping (Mudhsh 
& Almodfer, 2017), as can the numbers 6 and 9 (Simonyan & Zisserman, 2014). Care must 
thus be taken in the choice of data augmentation strategies. New techniques such as Smart 
Augmentation (Lemley et al., 2017), which generates augmented data during training that 
minimizes loss, can also automate this process to reduce error and confusion. 

Relative size and aspect ratio are also important traits to traditional taxonomic 
determination. In foraminifera, size can be an important determiner of species 
identifications, as different size fractions contain different relative abundances of certain 
species (Peeters et al., 1999) and species growth stages (Brummer et al., 1986, 1987). 
However, due to the nature of the convolutional layers in CNNs, all images are first resized 
to the same size, effectively erasing this biologically relevant information. Techniques such 
as attribute-based classification (Lampert et al., 2014), which performs classifications based 
on pre-trained semantic attributes such as color and shape, may potentially be used to 
attach taxonomically relevant information such as size to images to aid in classification. As 
automated taxonomy using computer vision is still a relatively nascent field, the potential 
for fruitful studies using existing computer science technologies and theory is vast. 
 
5.4 Moving forward with automated taxonomic methods in paleoceanography 

High-quality data on the distribution, abundance, and community composition of 
marine microfossils such as planktonic foraminifera in surface sediments are essential for 
understanding macroevolutionary and macroecological patterns and processes in the global 
ocean, with widespread application to paleoceanographic and paleoclimatic research. 
Previous work bringing machine learning methods to bear on the automatic recognition of 
coccolithophores (Beaufort & Dollfus, 2004) have allowed for the successful application of 
these methods to paleoceanographic studies. In particular, these methods have been used 
to investigate glacial-interglacial variability in primary ocean productivity as it relates to 
glacial-interglacial cycles in the Late Pleistocene (Beaufort et al., 2001) and measuring the 
sensitivity of coccolithophore calcification to changing ocean carbonate chemistry over the 
last 40,000 years and in the modern day, with implications for the response of calcifying 
organisms to ocean acidification (Beaufort et al., 2011). This success demonstrates the 
importance and feasibility of applying machine learning to planktonic foraminifera, for 
which similar concerns and applications exist. 
 Planktonic foraminifera have yet to be studied extensively using machine learning, in 
part due to the difficulty of obtaining well-resolved digital images. Although several systems 
for finely resolving foraminifera have been developed (e.g., Knappertsbusch, 2007; 
Knappertsbusch et al., 2009; Harrison et al., 2011; Mitra et al., 2019), they are relatively 
slow for whole slide scanning and processing. The AutoMorph system we use here is a 
compromise that uses image stacking to produce a good-quality image similar to what can 
be produced from a high-end light microscope. Although the produced images have some 
imperfections, the speed of our system allows us to generate large amounts of image data 
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in a short amount of time. The dataset we present here is the largest collection of Recent 
planktonic foraminifera images with associated high-quality expert-identified species labels 
to date. This dataset is of high value in and of itself, and 2D and 3D morphological 
measurements for all individuals extracted using AutoMorph can be cross-referenced from 
Elder et al. (2018) for morphometric and paleoceanographic applications. The Endless 
Forams portal we have developed also makes it easy for users to download our images for 
novel applications or extensions of the work presented here (e.g., reclassifying images 
according to morphologically recognizable genotypes or other classification schemes in 
order to re-train the classifier to recognize more finely subdivided groups, such as pink vs. 
white varieties of G. ruber). 
 The automated species identification model using supervised machine learning that 
we describe here represents an important step towards a future in which the widespread 
use of such methods relieves a great deal of the human labor burden of taxonomic 
identification of planktonic foraminifera. Automated methods make the prospect of quickly 
generating ‘Big’ datasets for application to pressing scientific questions possible. For 
example, the methods discussed here and the machine learning classifier we have trained 
could be used in conjunction with flow cytometry in order to rapidly produce large datasets 
for geochemical analyses. Moreover, technological advances and innovative workflows are 
allowing natural history museums to enter a new age of mass digitization of their collections 
(e.g. Hudson et al., 2015; Rillo et al., 2016), further contributing to the availability of 
abundant image data. Rapid, automated methods and pipelines such as the ones we 
describe here are a growing necessity not only as high-throughput imaging methods 
produce ever more data, but also in a world where rates of ecological turnover in the 
oceans are ever increasing as a result of a quickly changing environment.  
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Table 1. Supervised machine learning analyses.

Analysis Number CNN Used Image Size (pixels) Batch Size Layers Frozen Dropout Dropout Value Learning Rate Adjustment Factor L1/L2 Regularization Lambda Value

1 VGG16 64 x 64 100 7 No - 0.0001 - No -

2 VGG16 96 x 96 100 7 No - 0.0001 - No -

3 VGG16 128 x 128 100 7 No - 0.0001 - No -

4 VGG16 160 x 160 100 7 No - 0.0001 - No -

5 VGG16 160 x 160 100 7 Yes 0.1 0.0001 - No -

6 VGG16 160 x 160 100 7 Yes 0.01 0.0001 - No -

7 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - No -

8 VGG16 160 x 160 100 7 Yes 0.9 0.0001 - No -

9 VGG16 160 x 160 100 7 Yes 0.5 0.001 - No -

10 VGG16 160 x 160 100 7 Yes 0.5 0.00001 - No -

11 VGG16 160 x 160 100 7 Yes 0.5 0.00005 - No -

12 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - Yes 0.01

13 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - Yes 0.0001

14 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - Yes 0.00001

15 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - Yes 0.0000001

16 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - No -

17 VGG16 160 x 160 100 7 Yes 0.5 0.0001 - No -

18 VGG16 160 x 160 100 7 No - 0.0001 - No -

19 VGG16 160 x 160 100 7 Yes 0.5 Self-regulating 0.9 No -

20 VGG16 160 x 160 100 7 Yes 0.5 Self-regulating 0.5 No -

21 VGG16 160 x 160 200 7 Yes 0.5 Self-regulating 0.5 No -

22 VGG16 160 x 160 250 7 Yes 0.5 Self-regulating 0.5 No -

23 VGG16 160 x 160 200 7 Yes 0.5 Self-regulating 0.5 No -

24 InceptionV3 139 x 139 100 249 Yes 0.5 0.0001 - No -

25 DenseNet121 299 x 299 100 313 Yes 0.5 0.0001 - No -

Analysis Number Augmentation Num. Aug. Treatments Early-Stopping Patience Epochs Ran Max. Training Accuracy Min. Training Loss Max. Validation Accuracy Min. Validation Loss Top-3 Training Accuracy Top-3 Validation Accuracy

1 No - 5 15 0.97 0.08 0.79 0.77 - -

2 No - 5 11 0.95 0.13 0.80 0.66 - -

3 No - 5 32 0.99 0.03 0.83 0.63 - -

4 No - 5 32 0.99 0.03 0.85 0.63 - -

5 No - 5 19 0.98 0.05 0.84 0.56 - -

6 No - 5 29 0.99 0.03 0.84 0.59 - -

7 No - 5 27 0.99 0.04 0.86 0.55 - -

8 No - 5 30 0.98 0.07 0.83 0.76 - -

9 No - 5 40 0.84 0.46 0.73 0.93 - -

10 No - 5 27 0.97 0.11 0.85 0.55 - -

11 No - 5 17 0.98 0.07 0.84 0.56 - -

12 No - 5 18 0.21 2.94 0.23 2.94 - -

13 No - 5 15 0.97 0.15 0.80 0.81 - -

14 No - 5 15 0.97 0.12 0.82 0.65 - -

15 No - 5 15 0.97 0.08 0.84 0.60 - -

16 Yes 5 5 14 0.90 0.31 0.82 0.59 - -

17 Yes 2 5 24 0.96 0.11 0.84 0.58 - -

18 Yes 2 5 10 0.91 0.27 0.81 0.58 - -

19 No - 5 23 0.99 0.02 0.85 0.57 - -

20 No - 5 28 1.00 2.00  10
-4 0.87 0.59 - -

21 No - 5 35 1.00 6.00  10
-4 0.86 0.61 - -

22 No - 5 32 1.00 2.00  10
-3 0.86 0.62 - -

23 No - 10 44 1.00 3.00  10
-4 0.87 0.56 1.00 0.98

24 No - 5 20 1.00 1.20  10
-3 0.48 1.84 - -

25 No - 5 16 1.00 0.04 0.34 2.52 - -
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Figure 1. Example of how convolution is performed in a convolutional neural network. (A) 
An image can be represented as a matrix of pixel (px) values. Here, we have a 4px by 4px 
image represented as a 4x4 matrix. We use an example filter, or kernel, that is represented 
by the 2x2 matrix shown. (B) Convolution is performed by sweeping the filter across the 
image and summing the resulting values from element-wise multiplication of the values of 
the image matrix that the filter overlaps with the corresponding filter values. These sums 
are then saved to a new matrix that has one entry for every step of the convolution process. 
Here we use a stride of 1px, meaning that the filter moves 1px in each step. This is repeated 
until the filter has been passed over the entire image. (C) The resulting matrix of sums is the 
convolved feature, also known as an “activation map” or “feature map.”  
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Figure 2. The human confusion matrix, showing results from 24,569 individuals from the 
YPM coretop dataset with high-quality (i.e., ≥75% classifier agreement) species labels. The y-
axis lists the species comprised by the high-quality (or “correct”) identifications, followed by 
the number of images representing that species. The x-axis is the list of all species that 
objects were potentially identified as. Each cell of the matrix represents the proportion of 
identifications for each species (y-axis) that are identified as the corresponding species on 
the x-axis (e.g., 88% of the IDs collected for the 2,269 images of G. bulloides were correct; 
4% of those IDs were incorrectly selected to be G. falconensis, etc.). The color map is on a 
log-scale and shows higher (bluer/darker) vs. lower proportions (yellower/lighter). 
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Figure 3. Plots showing evolution of top-1 accuracy, loss, and top-3 accuracy with epoch 
number during model training using the VGG16 CNN with an image size of 160 x 160 pixels, 
a batch size of 200, 0.5 dropout regularization, a self-adjusting learning rate with an 
adjustment factor of 0.5, and early stopping with a patience of 10. A total of 44 epochs were 
completed before the early stopping algorithm stopped the run. The maximum top-1 
training accuracy was 99.99%; the maximum top-1 validation accuracy was 87.41%; the 
minimum training loss was 0.0003; the minimum validation loss was 0.5638; the maximum 
top-3 training accuracy was 100%; and the maximum top-3 validation accuracy was 97.66%. 
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Figure 4. The machine confusion matrix, showing results from the validation set, which 
contains 80% of the images with high-quality labels from the combined YPM coretop 
dataset and the Buckley dataset. The y-axis shows the “correct” species labels followed by 
the number of representative images in the validation set. The x-axis shows the 
corresponding predicted labels, with each matrix cell showing the proportion of validation 
objects identified as each species (e.g., 86% of the 536 validation images of G. bulloides 
were correctly identified as G. bulloides, 4% were incorrectly identified as G. falconensis, 
etc.). The color map is on a log-scale and shows higher (bluer/darker) vs. lower proportions 
(yellower/lighter). 
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Figure 5. Cross-plots comparing machine and human classifier performance. (A) Comparison 
of machine accuracy rates (i.e., proportion of validation images correctly identified) vs. 
human accuracy rates (i.e., proportion of correct identifications out of all identifications 
collected for the objects with high-quality species labels). “NPF” = Not a Planktonic 
Foraminifera. (B) Close-up of the box in panel (A). (C) Relationship between the number of 
samples per species and the human accuracy rate. (D) Relationship between the number of 
training samples per species and the machine accuracy rate. (E) Plot showing the 
relationship between the number of specimens sampled per species and the total number 
of human misidentifications that fall in that species category. For instance, the point marked 
with the arrow represents Globigerinoides ruber, which has 6,425 representatives in the 
dataset. Of all the identifications scored for the other 33 species in the dataset, a total of 
24,202 of identifications are mistakenly scored as G. ruber. There is a strong correlation (R2 
= 0.996; p < 2.2 × 10-16) between the number of representative specimens per species and 
the total number of misidentifications that fall into that species category. (F) Analogous plot 
to (E), but for the machine validation set and misidentifications. The correlation between 
the number of representative samples for a class and the number of misidentifications that 
fall in that class is much weaker for the machine classifier (R2 = 0.667; p = 1.253 × 10-9) than 
for the human classifiers. The green line in all plots represents the identity line. 
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Figure 6. Plates showing examples of the range of morphological, preservational, and 
imaging (orientation, color, lighting, etc.) variation within a given species in the Yale dataset. 
Representatives from four example species (Globigerinoides ruber, Globigerina bulloides, 
Orbulina universa, and Globorotalia menardii) are shown here. The pink specimen of G. 
bulloides comes from a slide where all specimens had been stained with Rose Bengal. 
 


