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by Michael J. Henehan

Boron-based proxies (�11B and B/Ca ratios), as applied to foraminiferal shells, have

attracted increasing attention in recent years, because of their propensity to record past

carbonate system conditions (and hence past levels of atmospheric CO2). However,

questions still surround the central tenets upon which these proxies are based. For in-

stance, why do all published calibration studies (bar one) describe pH-�11B relationships

in foraminifera that are counter to what aqueous theory would predict? Why do di↵er-

ent organisms record di↵erent patterns in �11B? How applicable are sparse observations

from culture experiments to the open ocean, and indeed, the oceans of the past? Finally,

how and why is boron actually incorporated into foraminiferal shells?

This PhD project goes some way to answering these questions. It extends the applicabil-

ity of the boron isotope-pH proxy, by contributing to our understanding of the inorganic

basis of the proxy, the causes behind (and variability in) foraminiferal ‘vital e↵ects’, and

the mechanisms of boron incorporation in foraminiferal calcite. Specifically, three new

species-specific calibrations (measured by MC-ICPMS) are presented, along with new

insights into intraspecies �11B variability, and new approaches for the propagation of

uncertainty in palaeo-pH estimates. As a consequence, this project will permit greater

confidence in future reconstructions of palaeo-CO2. These observations lend further sup-

port to foraminiferal microenvironment alteration’s being the main driver of deviations

from the aqueous basis of the proxy.

Conversely, however, this PhD project casts doubt on the utility of B/Ca ratios as a

palaeo-proxy. Measurements of B/Ca in open-ocean Globigerinoides ruber bear little

relation to in situ carbonate system parameters, but instead highlight a previously un-

noticed driver of boron incorporation (alongside salinity): PO3�
4 concentrations. While

further study is required, this finding appears to imply that boron incorporation in

foraminifera is dictated by inorganic crystal growth kinetics, rather than the carbonate

system.
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Chapter 1

Background to the Project: The

Boron Isotope Proxy

1.1 Atmospheric CO2 levels and their e↵ect on Earth’s cli-

mate.

The absorption and reflectance of infrared radiation by CO2 is a phenomenon that has

been understood since the pioneering works of the Irishman John Tyndall in the 1860s

(Tyndall, 1862). Later, Arrhenius (1896) linked this e↵ect to the earth’s climate system,

and speculated that changes in the Earth’s climate may have been linked to changes in

the concentrations of CO2 in the atmosphere. Today, it is now clear that the release of

greenhouse gases (principally CO2) from fossil fuels has been responsible for temperature

changes of ⇠0.6 - 0.8 �C since the industrial revolution, and a drop in ocean pH of 0.11

units (Caldeira and Wickett, 2003, Jacobson, 2005). Given that atmospheric CO2 levels

continue to rise (crossing the 400 ppm threshold earlier this year), much research has

focussed on predicting the long-term temperature response to this increase in CO2, i.e.

the determining the sensitivity of the climate to CO2 change. Most estimates range from

2 - 4.5 �C per doubling of atmospheric CO2 (IPCC, 2007), but some models suggest it

may be as high as 11 �C per doubling of CO2 (Stainforth et al., 2005). Given its

importance in planning mitigation strategies, it is crucial that the uncertainty on this

figure is reduced. One way of doing this is to look at climate events and transitions in

the past, from the geological record, and quantify the temperature change observed for

1
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a given CO2 fluctuation. However, to do this, accurate and reliable proxies for both

temperature and pCO2 are required.

1.2 Reconstructing CO2 levels: Proxies used

A number of proxies have been used to reconstruct CO2 levels in the past, including

(i) the �13C of pedogenic carbonates, (ii) stomatal density on fossil leaves, (iii) the

�13C of alkenone biomarkers, and (iv) boron-based proxies in corals and foraminiferal

carbonates.

The �13C of pedogenic carbonates (i.e. CaCO3 precipitated within palaeosols) is one

approach that has produced important estimates of past CO2 levels (e.g. Nordt et al.,

2002, 2003, Robinson et al., 2002, Breecker et al., 2010). Carbonate �13C, in this case,

is a function of the amount of biologically-respired CO2 present in the soil (which may

be partially inferred from the sedimentology of the section) and the CO2 levels in the

atmosphere (Cerling, 1984, 1991). The main advantage of this method is its applicability

to early Mesozoic and Palaeozoic sediments, stretching back as far as the Silurian period

(Mora et al., 1991), where non-lithified, unaltered marine sediments are unavailable.

However, there are limitations to the technique. There is some chance of diagenetic

alteration (Royer et al., 2001), although the extent to which this may a↵ect readings is

not entirely clear (Cerling, 1991, ?). Numerous assumptions must be made regarding

conditions within the palaeosol (e.g. depth of soil profile, di↵usivity of CO2, time of year

when carbonates were formed, the �13C of soil organic matter; Bowen and Beerling, 2004,

and references within). In addition, these carbonates may take thousands of years to

form, and are often hard to date beyond geological formation level, which precludes

high resolution studies of transient carbon system perturbations. Uncertainty is also

very high during periods where atmospheric CO2 levels are low relative to soil-respired

CO2 (Ekart et al., 1999, reconstruct Holocene CO2 values at 430 ± 770 ppm at 2�

uncertainty), which e↵ectively limits their application to greenhouse periods. During

rapid carbon isotope excursion (CIE) events such as the PETM, moreover, there might

be some disequilibrium between di↵erent carbon reservoirs, hindering interpretation of

results (Ekart et al., 1999). Furthermore, measurements may often be subject to a

positive bias, as a result of the decay of 13C-enriched organic matter deep within the

soil (Bowen and Beerling, 2004).
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Another terrestrial proxy used to generate CO2 records is the stomatal index, i.e. the

density of stomata on fossil leaves. Stomata control gaseous exchange in plants, but

they are also the main site of water loss (via transpiration). Thus as the partial pressure

of atmospheric CO2 rises, plants may reduce the density of stomata to minimise water

loss, but take in the same amount of C (Woodward and Bazzaz, 1988). In this way,

the density of stomata on fossil leaves may reflect levels of CO2 in the atmosphere. As

with palaeosols, however, there are limitations and complications. Firstly, responses

are species-specific (Woodward and Kelly, 1995), and thus this limits the applicability

of the proxy to well-preserved specimens of still extant, calibrated species. Secondly,

substantial variability in stomatal density is seen in the leaves of a single plant, and

thus the propensity for error is enhanced (Poole et al., 1996). Thirdly, because there

is a physiological limit to the possible density of stomata on a leaf, stomatal density-

CO2 curves are sigmoidal: this means that at CO2 levels above 350 ppm, sensitivity

to pCO2 changes may be dampened (Royer, 2001). CO2 levels may also change within

a forest canopy (Bazzaz and Williams, 1991), and may deviate from atmospheric CO2

to a degree greater than the typical quoted uncertainty of the technique. In addition,

because stomatal density responds to the partial pressure of CO2 (which varies with

altitude) rather than its concentration (Woodward and Bazzaz, 1988), assumptions must

be made about the altitude at time of deposition (Körner et al., 1986). Finally, as with

pedogenic carbonates, accurate dating can in some cases prove di�cult, meaning that

high-resolution CO2 records are often di�cult to construct. Some settings, however (for

example, cyclic lacustrine sediments) do allow for fine temporal resolution (for example,

accurate reconstruction of last deglacial CO2 rise; Rundgren and Beerling, 1999).

Another CO2 proxy, this time marine based, that is widely used in pCO2 reconstruction

(e.g. Jasper and Hayes, 1990, Freeman and Hayes, 1992, Pagani et al., 2005b, 2011, Seki

et al., 2010, Pagani et al., 1999) is the alkenone �13C proxy (Popp et al., 1989, 1998).

Alkenones are long-chained, unsaturated ethyl and methyl ketone biomarker compounds

produced by coccolithophores. Carbon isotope signatures of these compounds (or more

specifically the isotopic o↵set between these compounds and ambient �13Csw, ✏p) is

dependent on ambient [CO2(aq)] (Degens et al., 1968, Freeman and Hayes, 1992), but

also to a number of physiological interferences, such as cell size (Popp et al., 1998,

Henderiks and Pagani, 2007), growth rates (as may be dictated by nutrient availability;

Bidigare et al., 1997), the e↵ect of irradiance (Rost et al., 2002), temperature (Degens
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et al., 1968), the extent to which CO2 is actively transported into the cell (Keller and

Morel, 1999) and membrane permeability (Rau et al., 1996). These physiological factors

are typically summarised as one single term, ‘b’, (Bidigare et al., 1997, Pagani et al.,

2005b), which has been shown in the modern ocean to correlate well with [PO3�
4 ] (e.g.

Pagani et al., 2011). Using these correlations precise and accurate CO2 reconstructions

can be made (e.g. Jasper and Hayes, 1990, Pagani et al., 2002). However, deep-time

applications require a great many assumptions to be made. Critically, term ‘b’ has

a very large e↵ect on reconstructed CO2, and in some cases the assumptions made

regarding this factor drive the proxy signal, rather than the measured �13C itself (see,

for example, Seki et al., 2010).

Given these issues, boron-based CO2 proxies in carbonates (based on the inorganic

pH-dependent speciation of boron in seawater Hemming and Hanson, 1992) could well

constitute a valuable addition to the arsenal of CO2 proxies. Boron isotope-based re-

constructions have been shown to faithfully reproduce atmospheric CO2 levels from ice

cores (Hönisch and Hemming, 2005a, Foster, 2008, Henehan et al., 2013), and have al-

ready provided valuable insights into the carbon cycles of the past (Palmer et al., 1998,

Sanyal et al., 1997, Foster et al., 2012, Seki et al., 2010, Pearson and Palmer, 1999, 2000,

Pearson et al., 2009, Yu et al., 2013). However, boron-based proxies, like the others

already discussed, are not without their numerous caveats and complications. It is these

caveats that form the main focus of this PhD project, with the ultimate aim of improv-

ing our understanding of the Earth’s climate system and its sensitivity to carbon cycle

perturbations (both in the past and in the immediate future).

1.3 The Boron-based carbonate system proxies

1.3.1 The aqueous basis behind the Boron Isotope and B/Ca Proxies

The boron isotope and B/Ca proxies have a well-understood foundation in inorganic

aqueous chemistry that has played a major part in establishing them as reliable carbon-

ate system proxies. Boron is almost exclusively present in seawater in one of two forms:

the tetrahedrally-coordinated borate molecule, B(OH)4�, and the trigonally-coordinated

boric acid, or B(OH)3. Some boron does exist in polynuclear forms at typical seawater

pH, but this amount is negligible under normal seawater boron concentrations (Su and
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Suarez, 1995). The relative proportions of the two species is dependent on pH, such

that at low pH boron is entirely in the form of B(OH)3, and at high pH it is found as

B(OH)4� (see Fig 1.1, Panel A).
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Figure 1.1: The relative abundances (Panel A) and isotopic compositions (Panel B)
of the two most abundant boron species in seawater, at 25 �C and S = 35 psu. Boric

acid, B(OH)3, is marked in red, while borate ion, B(OH)4�, is marked in blue.
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Equilibration of the two boron species is rapid (125 µs, Zeebe et al., 2001), and is

described by the disassociation equation 1.1 below.

B(OH)3 +H2O , B(OH)�4 +H+ (1.1)

In addition to pH, the equilibration and thus relative abundance of B(OH)3 and

B(OH)4� is also dependent on temperature, salinity and pressure. The e↵ects of these

conditions on the equilibration of boron are parameterised as pK⇤
B, otherwise known as

the boron disassociation constant. Put simply, pK⇤
B is the pH at which the proportions

of B(OH)3 and B(OH)4� in a given solution are equal. Provided estimates of in situ

temperature, salinity and pressure are known, this constant may be calculated

relatively simply, using the equations of Dickson (1990) and programs such as

CO2sys.exe (Lewis and Wallace, 1998), CO2calc (Robbins et al., 2010) or CO2sys.m

van Heuven et al. (2011).

Boron has two stable isotopes, 11B and 10B (80 % and 20 % of total B respectively),

with the ratio of these two stable isotopes most commonly expressed in delta notation

such that

�11B (in h) = [
11B/10Bsample
11B/10Bstandard

� 1] ⇥ 1000 (1.2)

The ‘standard’ in question is NIST SRM 951 boric acid (Catanzaro et al., 1970).

Associated with the equilibration of the two aqueous boron species is an isotopic

fractionation, as a result of di↵erences in molecular geometries (Urey, 1947).

Specifically, B(OH)3 is isotopically heavier than B(OH)4�, with the isotope exchange

reaction described by Equation 1.3 below.

10B(OH)3 + 11B(OH)�4 , 11B(OH)3 + 10B(OH)�4 (1.3)

The equilibrium constant, 11�10KB, is described as

11�10KB =
11B(OH)3 ⇥ 10B(OH)�4
10B(OH)3 ⇥ 11B(OH)�4

. (1.4)

Thus, driven by the equilibration of boron species, the isotopic composition of both

boron species also varies with pH, as shown in Figure 1.1, Panel B. The �11Bsw, as

indicated by the dashed grey line in Figure 1.1B, or the �11B of either aqueous species,
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can thus be calculated by rearrangement of equation 1.5 below.

�11B(BT ) ⇥ [BT ] = (�11BB(OH)�4
⇥ [B(OH)�4 ]) + (�11BB(OH)3 ⇥ [B(OH)3]) (1.5)

Furthermore, providing the value of 11�10KB is known (see Section 1.3.3.3), pK⇤
B can

be calculated from salinity, temperature and pressure, and the �11B of total aqueous

Boron (�11Bsw) is known, then for a given pH the isotopic composition of either

aqueous boron species can be calculated, for example for B(OH)4� using Equation 1.6

below (Hemming and Hanson, 1992).

pH = pK⇤
B � log

 
�11BB(OH)�4

� �11Bsw

�11Bsw �11�10 KB ⇤ �11BB(OH)�4
� 1000 ⇤ (11�10KB � 1)

!
(1.6)

1.3.2 Extension to Marine Carbonates: The B/Ca proxy

The B/Ca proxy is based on known speciation of boron in seawater discussed above.

Since B(OH)4�, the charged ion, is thought to be only species of boron incorporated

into CaCO3, it was proposed that B/Ca ratios in CaCO3 should increase with

increased [B(OH)4�] (Hemming and Hanson, 1992). Given that the relative abundance

of B(OH)4� is pH dependent (see Fig. 1.1), B/Ca ratios in CaCO3 should then

respond to changes in the marine carbonate system. A central assumption, therefore,

is that only B(OH)4� is incorporated into CaCO3. This issue has in the past been the

subject of some considerable debate, and is still sometimes cited as contentious (Xiao

et al., 2013), despite the proximity of all published measurements of carbonate �11B to

the theoretical �11B of B(OH)4� ion (e.g. Hemming and Hanson, 1992, Sanyal et al.,

1996, 2000, 2001, Foster, 2008, this study). For example, Klochko et al. (2009) cite

small o↵sets in almost all measured �11BCaCO3 values from the new aqueous

�11BB(OH)�4
-pH curve (after Klochko et al., 2006) as evidence for incorporation of both

boron species. They support this with reference to magic angle spinning nuclear

magnetic resonance analysis (MAS NMR) showing 46% of boron in calcium carbonate

is trigonally co-ordinated (and thus, they suggest, boric acid) and 54% is tetrahedral

(read borate ion). However, even accounting for small o↵sets from �11BB(OH)�4
that are

observed, no �11B measurements in CaCO3 could permit such large scale incorporation

of B(OH)3. Ultimately, such assertions are unnecessary: the incidence of
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trigonally-coordinated boron in CaCO3 is not in itself proof of the incorporation of

boric acid. The incidence of trigonally-coordinated boron in the CaCO3 lattice merely

requires that tetrahedral borate is recoordinated upon incorporation (as suggested by

Sen et al., 1994, Hemming et al., 1998, Ruiz-Agudo et al., 2012). As such the possible

incorporation of B(OH)3 acid is not discussed further in this thesis.

However, the speciation of boron in seawater is not the only control on boron

incorporation in CaCO3: the site at which boron substitutes into the crystal lattice

also has a part to play. Hemming and Hanson (1992) suggest that boron substitutes at

the CO2�
3 site in CaCO3, given the similarity of B-O and C-O bond lengths (0.137 and

0.128 nm respectively; Kakihana et al., 1977), although they also note the possibility

that B resides in defect sites. Based on this assertion, Hemming and Hanson (1992)

proposed the formula for boron substitution into CaCO3 described in equation 5.1

below.

CaCO3solid +B(OH)�4aqueous ) Ca(HBO3)
solid

+HCO�
3aqueous +H2O (1.7)

By extension, they defined the exchange distribution coe�cient (KD) for this reaction

as

KDB
calcite

=
[HBO2�

3 /CO2�
3 ]

solid

[B(OH)�4 /HCO�
3 ]fluid

(1.8)

which was later shortened (Yu et al., 2007b, Zeebe and Wolf-Gladrow, 2001) to

KDB
calcite

=
[B/Ca]

solid

[B(OH)�4 /HCO�
3 ]fluid

. (1.9)

Consequently, if this mechanism for incorporation is correct, B/Ca ratios in

foraminifera should be dependent not only on the pH-driven speciation of boron

species, described above, but on the speciation of aqueous dissolved inorganic carbon

(DIC) compounds that compete for incorporation sites (also dependent on pH,

temperature, pressure and salinity; Zeebe and Wolf-Gladrow, 2001). Both inorganic

precipitation experiments (Hemming et al., 1995, Sanyal et al., 2000, He et al., 2013)

and culture experiments of planktic foraminifera (Sanyal et al., 1996, 2001, Allen et al.,

2011, 2012, and this study, Chapter 5) do demonstrate that the carbonate system is

indeed a strong control on B/Ca ratios in CaCO3. However, this observation is not

consistently reproduced in field studies, and it seems there may be other controls on
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planktic foraminiferal B/Ca ratios (Allen et al., 2011, 2012, Allen and Hönisch, 2012),

that are discussed later in section 1.4.4.

1.3.3 Extension to Marine Carbonates: The �11B-pH proxy

Unlike foraminiferal B/Ca ratios (see 1.4.4), the �11B-pH proxy appears to adhere

closely to inorganic theory. Based on the reasonable assumption that B(OH)4� is the

only boron species incorporated into CaCO3 (discussed above), then in situ pH may be

reconstructed from the measured �11B of CaCO3 by substituting �11BCaCO3 into

Equation 1.6, as in Equation 1.10 below (Hemming and Hanson, 1992).

pH = pK⇤
B � log

✓
�11BCaCO3 � �11Bsw

�11Bsw �11�10 KB ⇤ �11BCaCO3 � 1000 ⇤ (11�10KB � 1)

◆
(1.10)

As discussed previously, all published measurements of carbonate �11B lie close to (but

not on) the theoretical �11B of B(OH)4� ion, and show a pH dependence similar (but

not equal) to aqueous B(OH)4� (for example Hemming and Hanson, 1992, Sanyal

et al., 1996, 2000, 2001, Foster, 2008, Hönisch et al., 2009, this study). While this

general agreement with aqueous theory has rightly led to considerable optimism

regarding the potential of the �11B-pH proxy, there remain some inconsistencies with

theory that are yet to be explained. It is these inconsistencies that form the central

focus of much of this PhD project, and consequently they will be discussed in due

course. Firstly, as is clear from this equation, and as mentioned in section 1.3.1, three

other parameters must also be characterised before pH can be calculated from

�11BCaCO3 : pK
⇤
B, �

11Bsw, and 11�10KB. Following considerable advances in the past

thirty years, however, these variables are now increasingly well understood, and do not

hinder application of the �11B-pH proxy.

1.3.3.1 pK⇤
B

As discussed in section 1.3.1, pK⇤
B is easily calculable according to Dickson (1990) from

in situ temperature, salinity and pressure. That said, it should be noted that older

derivations of pK⇤
B do exist, and so caution should be taken when comparing pH

reconstructions from some early studies (e.g. Vengosh et al., 1991, Hemming and

Hanson, 1992, Sanyal et al., 1995, Palmer et al., 1987) that use alternative values of
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pK⇤
B (e.g. Hershey et al., 1986). These definitions of pK⇤

B may be derived from

di↵erent solution chemistries and with reference to di↵erent pH scales (e.g. NBS vs.

total hydrogen scale Dickson, 1990), and consequently resultant reconstructions of pH

are not strictly comparable. That said, uncertainty in the the estimation of pK⇤
B

typically introduces relatively little additional uncertainty in pCO2 reconstruction

(relative to analytical reproducibility, for example; see section 3.2.5.3). Where it does

become more crucial is in discussions of the shape and inflection of �11B-pH calibration

curves, where pH has been manipulated beyond typical seawater values, as discussed

by Klochko et al. (2009), Henehan et al. (2013) and later in this thesis in Chapter 3.

1.3.3.2 �11Bsw

A

B

C

Figure 1.2: In the modern ocean, multiple analyses (n = 28) of boron isotope ratios in
seawater from di↵erent depths (Panel A), temperatures (Panel B) and salinities (Panel
C) give uniformly consistent values of �11B. Redrawn from Foster et al. (2010). Grey
bands indicate ±0.4 h uncertainty (2se) on the mean value of 39.61 h. Individual error
bars reflect long term analytical reproducibility at Bristol Isotope Group, University of

Bristol, determined by repeat analysis of an in-house seawater standard.

�11Bsw is an important variable, in that it strongly e↵ects calculated values of pH

calculable from �11BCaCO3 . While very early works reported inconsistent values of
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�11Bsw(Shima, 1963, Agyei, 1968, Nomura et al., 1982), since Spivack and Edmond

(1987), analyses from all around the global oceans fall consistently at or around

39.5h. The latest published estimate of �11Bsw, measured using MC-ICMPS, is 39.61

± 0.04 h (Foster et al., 2010), with no discernible di↵erence between waters from

di↵erent hydrographic regimes (see Fig. 1.2). Whilst there remains little controversy

regarding the boron isotopic composition of modern seawater, some uncertainty does

arise when applying the �11B-pH proxy to the geological record beyond the residence

time of boron in the oceans (10-20 Ma; Taylor and McLennan, 1985, Lemarchand

et al., 2002b, Simon et al., 2006), due to an incomplete understanding of the evolution

of �11Bsw through time. Various modelled trajectories have been proposed (see

Lemarchand et al., 2002b, Simon et al., 2006), but crucially, without means of

empirical validation. Furthermore, given that even the level and isotopic composition

of boron flux to the modern oceans is poorly constrained and based on large scale

extrapolations (see Lemarchand et al., 2002b), much work remains to be done before

modelled estimates of past �11Bsw can be relied upon. Consequently, attempts have

been made to infer the �11Bsw from other parameters, such as the surface-thermocline

pH gradient (Pearson and Palmer, 1999), coupled �13C and �11B measurements from

mixed-layer planktic and epibenthic foraminifera (Foster et al., 2012), or trends in an

imbricated multispecies benthic foraminiferal �11B record through the Cænozoic

(Raitzsch and Hönisch, 2013). While there are uncertainties associated with each

individual approach (for example the assumptions that must be made regarding

species-specific vital e↵ects), combining these multiple approaches (ideally converging

on similar estimates of �11Bsw) has good potential in constraining Phanerozoic �11Bsw,

and in turn pCO2, beyond the residence time of oceanic boron.

1.3.3.3 11�10KB and pH-sensitivity

The fractionation factor, 11�10KB, put simply, expresses the o↵set in boron isotopic

composition between boric acid and borate (as previously defined in Eq. 1.4).

Crucially, it describes the degree of change in �11BB(OH)�4
expected with a given

change in pH (i.e. the pH-sensitivity of �11BB(OH)�4
). 11�10KB, also often referred to

as ↵, was first estimated by Kakihana et al. (1977) at 1.0194, with a slight temperature

dependence. This value (being for a long time the only available estimate) was widely

adopted and applied in palaeo-pH reconstructions (e.g., Pearson and Palmer, 1999,
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Sanyal et al., 1995, Hönisch and Hemming, 2005a). However, by 2005 several groups

had begun to re-estimate 11�10KB using a variety of methods, (as summarised in Table

1.1), and it had become apparent that persistence in the use of Kakihana et al.

(1977)’s value was not well-founded (Zeebe, 2005, Pagani et al., 2005a, Pagani and

Spivack, 2007).

A major advance was made in 2006, when Klochko et al. (2006) determined the

fractionation factor empirically for the first time, from the di↵erence in the dissociation

constants of 11B(OH)3 and 10B(OH)3 in a number of media (including artificial

seawater) using precise spectophotometry. Their observed value of 11�10KB= 1.0272 ±

0.0006 was substantially higher than the conventional Kakihana value, and agreed with

more recent theoretical derivations (see Oi, 2000, Liu and Tossell, 2005, Table 1.1). In

addition, Rustad and Bylaska (2007) revealed errors in calculation that had led

Kakihana et al. (1977) and Sanchez-Valle et al. (2005) to underestimate the value of

11�10KB. These authors went on to independently calculate 11�10KB as between 1.026

and 1.028 (Rustad et al., 2010), in agreement with the empirical value of Klochko et al.

(2006). Given this convergence between calculated and observed 11�10KB, throughout

this thesis 11�10KB is taken as 1.0272 ± 0.0006 (Klochko et al., 2006).

1.3.3.4 Converting palaeo-pH to palaeo-CO2

As already shown, given approximations for pK⇤
B,

11�10KB and �11Bsw, it is possible to

derive ocean pH from foraminiferal �11B. However, in order to estimate aqueous pCO2

from ocean pH, an approximation of one other carbonate system parameter is required.

Given two carbonate system parameters out of six (HCO�
3 , CO

2�
3 , CO2(aq.), pH, Total

Alkalinity and Dissolved Inorganic Carbon; Zeebe and Wolf-Gladrow, 2001) it is

possible to resolve the whole carbonate system and calculate aqueous pCO2 via

Henry’s law. The most common second carbonate system parameter used in aqueous

pCO2 reconstruction is Total Alkalinity (or TAlk), largely because a) the reconstructed

carbonate system is relatively insensitive to changes in TAlk, b) because TAlk in the

modern ocean is strongly correlated to salinity, which may be more easily estimated

from sea-level or foraminiferal �18O and Mg/Ca (see for example Hönisch and

Hemming, 2005b) and c) because TAlk may also be approximated from CCD depth

and other hydrographic properties (e.g. Foster et al., 2012).
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Figure 1.3: In the modern ocean, air-sea disequilibrium (with regards pCO2) is
widespread, with upwelling areas such as the Gulf of Oman or the Eastern Equato-
rial Pacific being higher in pCO2 than the atmosphere, and other high latitude regions
being relatively depleted. As such, air-sea disequilibrium should be considered when in-
terpreting aqueous pCO2reconstructed from �11B and its relation to atmospheric pCO2.

Modified from Takahashi et al. (2009).

Finally, for reconstructed mixed-layer aqueous pCO2 to be interpreted as atmospheric

pCO2, one must either assume equilibrium with the atmosphere (as in Foster, 2008) or,

where possible, correct for disequilibrium (as in Henehan et al., 2013). Air-sea

disequilibrium with regards CO2 (or �pCO2) can be large, for example in areas of

upwelling (see Fig. 1.3). As such, downcore atmospheric CO2 reconstructions should

ideally be sited in stable, oligotrophic ocean settings, where �pCO2 is minimal. That

said, �11B measurements in regions of disequilibrium can also be useful, for example to

reconstruct past intensities of upwelling or deep mixing (e.g. Palmer et al., 2010,

Mart̀ınez-Bot̀ı et al., in prep.).

Although there are clearly numerous constants and secondary parameters that need to

be defined to generate pCO2 data from boron isotopes, as we will show in Chapter 3,

these issues are not restrictive. Neither second carbonate system (e.g. TAlk), nor

estimates of the disassociation constant (pK⇤
B) have a major control on pCO2

estimates produced via the boron isotope-pH proxy. Furthermore, the long residence

time of boron in the ocean means that within the past 10 - 20 Myr (Simon et al., 2006,

Lemarchand et al., 2002b) the question of �11Bsw is not a significant source of
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uncertainty. As it stands, boron isotope-derived CO2 estimates (providing they are

properly calibrated) are second in accuracy and precision only to ice-cores in the

modern era (see Chapter 3, Fig. 3.10) and have the potential to greatly improve our

understanding of the Earth’s climate system. That said, the proxy is still not without

its controversies, and it is these outstanding issues (detailed below) that this PhD

thesis attempts to address.

1.4 Boron-based proxies: controversies and quandaries

1.4.1 Analytical issues

One issue that clouds comparisons of boron isotope datasets produced by di↵erent

laboratories, and may also result in artificial o↵sets from the �11B of B(OH)4�, is that

of analytical artefacts resulting from di↵erent analytical protocols. Precise

measurement of �11B is di�cult for a number of reasons. Firstly, the large mass

di↵erence between 10B and 11B relative to absolute mass results in large

machine-induced fractionations that can be di�cult to correct for. Secondly, since

boron has only two naturally-occurring isotopes and synthetic isotopes of boron are

short lived, double-spike approaches (such as have proved successful in other systems,

e.g., Zn Bermin et al., 2006) cannot be used to correct machine induced isotope

fractionation. It is perhaps not altogether surprising, then, that early interlaboratory

comparisons (Gonfiantini et al., 2003, Aggarwal et al., 2009) revealed ranges in �11B

measured in the same sample material of up to 11 h; levels of inconsistency that are

wholly incompatible with palaeo-pH reconstruction (where precisions of < 0.5 h are

required).

Various methods have been used to measure boron isotopes, each with strengths and

weaknesses. Negative thermal ionization mass spectrometry (N-TIMS) has produced

by far the bulk of published boron isotope measurements in carbonates, not least

because of its high ionisation e�ciency and thus propensity for measurement of

relatively small sample sizes (Aggarwal and Palmer, 1995). Sample B is loaded onto

filaments (typically Re) in known matrices (typically artificial seawater or dissolved

CaCO3) and heated to produce BO2� ions. However, instrumental mass fractionation

of the dominant 10B16O2� and 11B16O2� species is considerable and varies within runs



Chapter 1. Background Theory 16

7

8

9

10

11

14

15

16

17

18

14

15

16

17

18

24

25

26

27

23

24

25

26

20

22

24

26

22

23

24

25

21

22

23

24

17

19

21

23

17

19

21

23

17

19

21

23

17

19

21

23

13

15

17

19

13

15

17

19

20

21

22

23

1
1

į
B

 (
‰
)

1
1

į
B

 (
‰
)

1
1

B
 (
‰
)

1
1

į
B

 (
‰
)

1
1

į
B

 (
‰
)

BIG LDEO IPGP DUKE BIG LDEO IPGP DUKE BIG LDEO IPGP DUKE

(a) IC
A

(b) IC
B

(c) IC
C

(d) IC
D

(e) IC
1

(f) IC
2

(g) IC
3

(h) IC
4

(i) IC
5

(j) IC
6

(o) IC
11

(n) IC
10

(m) IC
9

(l) IC
8

(k) IC
7

± 1.5 ‰

± 1.6 ‰

± 0.8 ‰

± 0.7 ‰

± 0.9 ‰
± 2.3 ‰

± 1.4 ‰

± 0.9 ‰

± 1.4 ‰

± 1.8 ‰ ± 1.8 ‰

± 2.2 ‰

± 2.2 ‰

± 2.9 ‰

± 1.6 ‰

į

B/Ca = 65 µmol/mol

B/Ca = 121 µmol/mol

B/Ca = 198 µmol/mol

B/Ca = 376 µmol/mol

B/Ca = 490 µmol/mol

B/Ca = 522 µmol/mol

B/Ca = 484 µmol/mol

B/Ca = 483 µmol/mol

B/Ca = 480 µmol/mol

B/Ca = 98 µmol/mol

B/Ca = 95 µmol/mol

B/Ca = 88 µmol/mol

B/Ca = 100 µmol/mol

B/Ca = 200 µmol/mol

B/Ca = 225 µmol/mol

Figure 1.4: Analyses of 15 di↵erent CaCO3 samples at four di↵erent laboratories
reveals large-scale variation in measured �11B. Variability of results are greater at lower
B/Ca ratios (see panels j -m) although this pattern is by no means uniformly consistent
(e.g. panels a and n). Laboratory abbreviations are as follows: BIG = Bristol Isotope
Group, LDEO = Lamont-Doherty Earth Observatory, IPGP = Institut de Physique du
Globe de Paris, DUKE = Duke University. Figure modified from Foster et al. (2013).

(Zeininger and Heumann, 1983). Furthermore, samples are often analysed in dissolved

CaCO3 matrix (following Hemming and Hanson, 1994), while standards (seawater and

NIST SRM 951 boric acid) are measured in seawater matrix, which fractionates

di↵erently. As a consequence, it is not possible to accurately quantify the amount of

in-run fractionation taking place, making absolutely accurate measurements di�cult

(Sanyal et al., 1995, Foster et al., 2006). Workers have attempted to mitigate this by

running within a controlled temperature range of (900 - 1050 �C), by integrating

signals over a set time (typically 20 - 30 minutes) once a set ionisation threshold has

been reached, and by discounting data if there is in-run drift of > 1 h (Hemming and

Hönisch, 2007). In addition, samples are typically analysed 3-10 times (Hemming and

Hanson, 1994, Sanyal et al., 1996, Hemming and Hönisch, 2007), and a subset of these

analyses that meet certain criteria for acceptability are averaged to give a mean and

standard error (Hemming and Hönisch, 2007). One final issue sometimes faced with
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analyses by NTIMS is isobaric interference from 12C14N16O ions at mass 42,

originating from organic impurities in the carbonate matrix. To counter this, signals at

mass 26 (12C14N) are monitored, and �11B measurements may be rejected if a signal is

observed above baseline values. However, as Foster et al. (2006) point out, even with

strict ‘quality control’ measures such as these (as outlined by Hemming and Hönisch,

2007), between laboratories, measurements for similar carbonates often disagree.

Measurements of �11B in modern Porites coral carbonates via NTIMS (Vengosh et al.,

1991, Hemming and Hanson, 1992, Gaillardet and Allègre, 1995) varied by up to 3 h
between laboratories (Hemming et al., 1998). In foraminifera, measurements of

Holocene G. sacculifer/G. trilobus analysed via NTIMS span a range of up to ⇠10 h,

from 14.7 h (Vengosh et al., 1991) to 25 h (Pearson and Palmer, 2000). More

recently, Hönisch et al. (2003) report systematic o↵sets of ⇠ 2 h between NTIMS

measurements from Southampton and NTIMS measurements from GEOMAR, Kiel. In

addition, di↵erences of ⇠1.1 h are observed between analyses of foraminifera at

Lamont-Doherty Earth Observatory (LDEO) and State University New York (SUNY)

Stony Brook (Hönisch et al., 2009).

With these issues in mind, a new interlaboratory comparison study was undertaken

(Foster et al., 2013) to investigate and quantify the degree of interlaboratory bias

between four of the leading laboratories carrying out routine �11B measurement in

biogenic carbonates. While this study found good agreement between analytical

techniques when measuring boric acid solutions (±0.31 to ±0.61 h) and seawater

(39.65 ±0.41 h), it reveals significant and non-systematic variation in measurements

of samples with a CaCO3 matrix (±0.65 to ±2.86 h, see Fig. 1.4). Moreover,

interlaboratory inconsistencies appear to be related to both the B:matrix ratio of the

sample material and the amount of B available for analysis: lower B/Ca CaCO3

samples (similar in B/Ca to foraminifera) and samples of <200 ng B more often result

in larger analytical discrepancies. Given that a change of 1 h might equate to a

seawater pH change of ⇠0.15, this is clearly pressing issue facing palaeo-pH

reconstruction, and highlights the need for laboratories to fully demonstrate analytical

accuracy a priori, as has been done for MC-ICPMS analyses via standard addition

experiments (Ni, 2010). That said, the intercomparison study of Foster et al. (2013)

does suggest that relative di↵erences between samples measured in the same

laboratory may be, for the most part, consistent, even if data may be o↵set in terms of
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absolute �11B (e.g. see Fig. 1.4, panels n - o). In this way, palaeo-pH reconstructions

can still be undertaken, providing species-specific calibrations are re-calculated such

that they intercept laboratory-specific core-top measurements (as in Foster et al.,

2012). Nonetheless, inconsistencies in absolute �11B render thorough and quantitative

investigations of such issues as foraminiferal vital e↵ects (see section 1.4.2) very

di�cult. At present, more in-depth interlaboratory comparisons (comprising ⇠ 15

laboratories worldwide, including the University of Southampton and co-ordinated by

Drs. Ed Hathorne and Marcus Gutjahr [GEOMAR, Kiel], Dr. Gavin Foster [NOC,

Southampton] and Dr. Bärbel Hönisch [LDEO, New York]) are being undertaken to

explore this issue still further.

1.4.2 ‘Vital E↵ects’ in foraminiferal carbonate �11B

As discussed in section 1.3.3, �11B measurements from biogenic carbonates typically sit

close to the �11BB(OH)�4
. However, barring the data of Rae et al. (2011), all measured

carbonates still show some o↵set. Analytical di�culties (as discussed above) aside, it is

likely that some of this variation in recorded �11BCaCO3 compared to ambient

�11BB(OH)�4
is due to ‘vital e↵ects’. The term ‘vital e↵ect’ is used in a

palaeoceanographic context to describe an interference of the life processes of a proxy

recorder upon the proxy signal itself. Vital e↵ects in corals, for example, are most

likely due to the segregation and pH alteration of the calcifying fluids from ambient

seawater (see for example Reynaud et al., 2004, Trotter et al., 2011, McCulloch et al.,

2012, Anagnostou et al., 2012, Venn et al., 2013). However, this PhD project focusses

mainly on foraminiferal proxy records, and as such hereon the term ‘vital e↵ects’ is

used mainly to refer to changes in the recorded �11B of a foraminiferan shell caused by

its life habits and biology. These foraminiferal vital e↵ects have the potential to cloud

palaeo-CO2 reconstructions if not fully understood, or failing that, characterised

through species-specific calibrations. Not only this, but since any deviation from

idealised �11B could imply a pH alteration (either of the microenvironment or the

calcifying fluid, as discussed in sections 1.4.2.2 and 1.4.2.3), vital e↵ects in boron

isotopes carry large implications for our understanding of other proxy systems that

have been shown to be a↵ected by pH, for example �18O (Spero et al., 1997), �13C

(Zeebe et al., 1999a), and Mg/Ca (Russell et al., 2004).
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Within the planktic foraminifera, all measured species show considerable o↵sets, either

towards values of �11B that are heavier than aqueous B(OH)4� (O. universa, Sanyal

et al. 1996; G. sacculifer, Sanyal et al. 2001; G. ruber, Foster 2008, Henehan et al.

2013) or lighter (N. dutertrei, Foster 2008; G. bulloides, Hönisch et al. 2003; N.

pachyderma, Yu et al. 2013). What’s more, the magnitude of these o↵sets may also

vary with foraminiferal size (Hönisch and Hemming, 2004, Ni et al., 2007, Henehan

et al., 2013). In this section, some of the various hypotheses advocated to explain these

observed patterns of �11B in foraminifera are discussed. These themes will be revisited

and developed further during the course of this thesis.

1.4.2.1 Life habits

Some vital e↵ects in foraminifera may not stem from any intrinsic biochemical process,

but are instead a product of the habitat in which they live. In the case of some benthic

foraminifera, for example, observed vital e↵ects may be linked to an infaunal life habit

(Rae et al., 2011). Because infaunal species precipitate their tests within sea-floor

sediments, their boron isotopic composition not only reflect a lower pH due to bacterial

respiration, but a drop in the �11B of pore-waters (due to processes such as desorption

from clay and the dissolution of opals and carbonates). This change in �11BCaCO3

along the pore-water pH and �11Bporewater gradient has been well documented both in

MC-ICPMS analysis (Rae et al., 2011) and N-TIMS analysis (Hönisch et al., 2008) of

various benthic species, including (to name but a few) Oridorsalis umbonatus,

Gyroidina soldanii and Uvigerina peregrina.

Depth preference in planktic foraminifera, this time in the water column, may also

have an influence on recorded �11B, due to typical variations in pH, pK⇤
B (itself a

function of salinity, temperature and pressure) and light with depth in the water

column (see Fig. 1.5). While this in itself cannot be considered a vital e↵ect, and

indeed allows past pH profiles to be reconstructed (e.g. Palmer et al., 1998), it becomes

an issue when planktic foraminifera migrate in the water column throughout their life

cycle (e.g. Erez and Honjo, 1981), resulting in di↵erent chambers/layers recording

conditions from di↵erent depths. Since planktic foraminifera are typically analysed in

bulk samples, this can see depth-integrated signals in �11B recorded, potentially

hindering interpretation of �11B data. Furthermore, intratest heterogeneity may also
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Figure 1.5: An example of pK⇤

B , pH and �11BB(OH)�4
changes along a verticle depth

profile. Example taken from 49 �N, 12 �W in the Northeast Atlantic (map inset), from
GLODAP (Key et al., 2004). pH (on the total scale) and pK⇤

B were calculated using
CO2sys.m (van Heuven et al., 2011), and �11BB(OH)�4

assumes a �11Bsw= 39.61 h
(Foster et al., 2010). Note light attenuation might also a↵ect the intensity of vital

e↵ects (see section 1.4.2.3).

result in modification of �11B signals with dissolution (see section 1.4.2.4 below). Thus

for reconstruction of mixed-layer pH (and by proxy atmospheric CO2), it is preferable

to use mixed-layer species of foraminifera whose migration in the water column is

minimal (e.g. G. ruber). Where this is not possible, an understanding of a species

habitat preference is necessary. The magnitude of vital e↵ects associated with depth

migrations will vary with di↵erent species depth preferences, as well as the strength of

physicochemical gradients in the local water mass (and how these gradients change

through time), but should be considered in palaeo-reconstructions.

1.4.2.2 Biomineralisation and alteration of vacuolised seawater

It has been suggested that some vital e↵ects in foraminifera may be intrinsically linked

to the processes of biomineralisation (e.g. Rollion-Bard and Erez, 2010). In vivo

observations of calcification fluids in vacuoles within symbiont-bearing benthic

foraminifera (Bentov and Erez, 2005, Bentov et al., 2009, de Nooijer et al., 2008)
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A B C

Figure 1.6: Modified from Bentov et al. (2009), these images illustrate the pH of
seawater vacuoles in Amphistegina lobifera, as visualised using with SNARF-1 dextran.
Panel A shows the alkaline seawater vacuoles in red (representing 640 nm wavelength
flourescence), and low-pH vesicles in yellow-green (denoting relatively stronger 580 nm
flourescence). Panel B is the same image overlain with transmitted light imaging, while
Panel C illustrates the emission ratio 640/580 nm, and the corresponding pH, of the
large seawater vacuole (marked ‘v’ in Panels A and B) and the ambient seawater. The
small vesicles with bright yellow color (marked ‘av’) were thought to be, according to
their low 640/580 fluorescence ratio, acidic (pH <6). However, more recent investiga-
tions suggest these may in fact be internal symbionts (J. Erez, pers. comm.). Other
symbols denote: intracellular space (‘in’), extracellular space (‘ex’) and algal symbionts

(‘s’).

suggest that forams vacuolise seawater via endocytosis, and then raise the pH in these

vacuoles to 8.5 - 9 in order to increase the CaCO3 saturation state (⌦CaCO3) and thus

aid calcification (see Fig. 1.6).

Microelectrodes have also revealed high pH at the calcification site in Amphistegina

lobifera, a symbiont-bearing benthic foram (Grinstein et al., 2004). While no calcifying

vacuoles have been observed unequivocally in planktic foraminifera (mysterious

‘cryptosomes’ Lee et al., 1965, might however be analogous), it seems unlikely that the

mode of calcification would be greatly di↵erent within the low-Mg calcite foraminifera.

It might seem likely, then, that recorded �11B should in fact reflect the pH of these

biologically altered fluids, and not ambient pH. Spot analyses of A. lobifera using

secondary ionisation mass spectrometry (SIMS, Rollion-Bard and Erez, 2010) found a

range of �11B values within an individual shell, with the lowest �11B values reflecting

ambient pH and the highest reflecting the pH of altered seawater vacuoles (see Fig.

1.7). If this was to be true of planktics, it could explain some of the observed elevated

�11B and lowered pH sensitivities apparent from whole test analyses (e.g. Sanyal et al.,

1996, 2001). That said, a ⇠ 0.8 h o↵set from the theoretical B(OH)4� curve in G.
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Figure 1.7: Results of spot analyses of Amphistegina lobifera using SIMS (Rollion-
Bard and Erez, 2010), showing a range of �11B values within the shell. Since the lowest
�11B values translate to ambient pH values (calculated using the 11�10KB of (Klochko
et al., 2006)) and the highest do not exceed a threshold value reflecting the pH of
altered seawater vacuoles (Bentov et al., 2009, de Nooijer et al., 2008), the authors
interpret this as evidence of biomineralisation-induced vital e↵ects. Figure is redrawn

from Rollion-Bard and Erez (2010).

ruber (Foster, 2008) only equates to a pH elevated by ⇠ 0.07, which seems

incompatibly low given a vacuole pH of 8.8-9. Furthermore, core top symbiont-barren

benthic forams appear to reflect ambient pH without any stemming o↵set from

internal pH upregulation (Rae et al., 2011).

In order to explain this lack of vital e↵ect in epifaunal benthic foraminifera, Rae et al.

(2011) propose a hypothetical mechanism for boron incorporation. These authors

hypothesise that as seawater vacuoles are formed, B(OH)3 is rapidly removed, leaving

only B(OH)4�. Through this method as long as all boron remaining in the vacuole is

incorporated into CaCO3, no matter what re-equilibration of boron occurs within the

vacuolised seawater, �11BCaCO3 will reflect the �11B of ambient B(OH)4� ion. While

this would disagree with Rollion-Bard and Erez (2010), it should be noted that the

large reported error values associated with SIMS (± 0.9 h, 1�, thus 1.8 h at 95%

confidence) may mean at least some internal variation in their study is
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analytically-derived. In addition, the presence of internal photosymbionts in the

benthic species studied by Rollion-Bard and Erez (2010) may contribute to the

observed low pH sensitivity, as will be discussed in section 1.4.2.3 (given that this has

been shown to raise the pH in the microenvironment of the foraminifera; Köhler-Rink

and Kühl, 2000, Glas et al., 2012a). That said, there remain considerable hurdles to

the mechanism for boron incorporation proposed by Rae et al. (2011). Firstly, B(OH)3

would need to be removed from the vacuole faster than the equilibration time of boric

acid (125 µs, Zeebe et al., 2001), which seems challenging. In addition, it would require

both charged B(OH)4� and uncharged B(OH)3 (albeit in the low quantities likely to

be present at elevated vacuole pH) to be incorporated into the growing CaCO3 lattice,

which seems chemically hard to explain.

Another proposed mechanism for a vital e↵ect linked to biomineralisation is that there

is an e↵ect of precipitation rate upon recorded �11B. The basis of any such vital e↵ect

is the idea that as precipitation rate increases, there may be a kinetic e↵ect, seeing the

lighter 10B isotope preferentially incorporated, in a similar manner to carbon isotopes

(Turner, 1982). However, Zeebe et al. (2001) argue that any kinetic e↵ect due to

changes in calcification rate is unlikely: even with large changes in calcification rate,

precipitation is typically 3 to 8 orders of magnitude slower than boron isotope

equilibration in aqueous boron species. Consequently, it is assumed surface-adsorbed

boron would re-equilibrate too quickly with aqueous boron for any preferential take-up

of isotopically lighter B(OH)4� to be preserved in the CaCO3 lattice. Another

hypothesis is that at rapid precipitation rates the isotopically-heavy boric acid may be

incorporated into the CaCO3 lattice as an impurity. However, this has not been

demonstrable experimentally, and would still require a mechanism and a site for

uncharged B(OH)3 to adsorb onto the growing crystal face. One di�culty in testing

kinetic issues experimentally is that precipitation experiments tend to control

precipitation rate by altering pH/[CO2�
3 ]/⌦, meaning any e↵ect of precipitation rate

cannot be studied in isolation. To this end, decoupling growth rate and carbonate

saturation would certainly be desirable.
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1.4.2.3 Microenvironment alteration

Because of the viscosity of seawater, the immediate vicinity (specifically, the region

below the Kolmogorov scale, ⌘, where viscosity predominates turbulent flow;

Kolmogorov, 1991) around a foraminiferal test sees little turbulent mixing (Lazier and

Mann, 1989). This region is known as the di↵usive boundary layer, since transport of

nutrients, dissolved carbon species, etc. is dictated not by any advection, but by

di↵usion only. Because of the relatively slow equilibration and di↵usion rates (see

Zeebe et al., 1999b) of dissolved carbon species, the carbonate system within this

di↵usive boundary layer around a foraminifera may be perturbed relative to the

surrounding waters (Zeebe et al., 1999a), and, it is thought, may consequently produce

vital e↵ects in recorded �11BCaCO3 .

The microenvironment of the foraminifera is influenced by a number of processes,

schematically represented in Fig. 1.8. The host foraminifera takes in O2 and releases

CO2 through metabolism and respiration, thereby lowering pH. In addition, the

process of calcification involves the takeup of Ca2+ and DIC, and the release of H+

ions, reducing alkalinity and DIC in a 2:1 ratio and lowering aqueous pH. As such, in

the absence of photosynthesising symbionts, the foraminiferal microenvironments

should be lower in pH than the ambient seawater.

In contrast, in symbiont-bearing foraminifera (during the day), carbonate system

perturbation is thought to be dominated by the takeup of DIC (probably mainly

CO2aq Colman et al., 2002, Zeebe et al., 1999a) and release of O2 by photosynthetic

symbionts. This raises pH and lowers DIC, to the extent that the acidifying e↵ects of

host respiration and calcification are predominated (Zeebe et al., 1999a, 2003). It

should also be noted that in the absence of light, symbionts cease to take up DIC but

continue to release CO2 through respiration of stored sugars, thus accentuating

microenvironment acidification.

There is considerable empirical evidence for these microenvironment perturbations in

foraminifera. Jørgensen et al. (1985) profiled the pH and O2 of the microenvironment

around Globigerina sacculifer using microelectrodes, and found that in the absence of

light the pH around the foram dropped to ca. 8.15 from an ambient seawater pH of

8.23 (due to respiration and calcification). However, with increasing light intensity and

increasing photosynthetic activity the pH in the microenvironment of the foram
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Figure 1.8: Microenvironments around foraminifera see carbonate system pertur-
bation from numerous forcings. This schematic, redrawn from Zeebe et al. (1999a),
illustrates some of these forcings. Within the symbiont halo (between R1, the test
edge, and R2), DIC is taken up by photosynthesising symbionts, and by calcification
in the host foraminifera. CO2 is also released by respiration in the host foraminifera
and the symbionts. Calcification also takes in Ca2+ and releases H+ ions at R1. From
R1 to r, the edge of di↵usive boundary layer, DIC and B(OH)3/B(OH)4� equilibration

relies on di↵usion and chemical speciation and reaction.
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increased, peaking at about 8.6 at Pmax (photosynthetic saturation). Subsequently,

Rink et al. (1998) and Köhler-Rink and Kühl (2005) expanded these experiments using

multiple individuals of O. universa, and demonstrated that microenvironment pH

alteration can be even greater, with pH at the test boundary (R1, Fig. 1.8) peaking at

>8.8 at 717 µmol photons m�2 s�1 irradiance, and dropping to <8.0 in the absence of

light. Similarly, among benthic foraminifera, large symbiont-bearing benthic

foraminifera show similar patterns of microenvironment pH elevation (Köhler-Rink and

Kühl, 2000, Glas et al., 2012a) and slow-growing, symbiont-barren species show little

or no pH perturbation (Glas et al., 2012a). That said, Glas et al. (2012b) observed

substantial (�pH up to -1.75) and often prolonged (up to 7 h) acidification close to the

site of calcification in Ammonia tepida during calcification.

Given, then, that these phenomena are readily observable, it is perhaps unsurprising

that microenvironment e↵ects are most commonly invoked as the source of boron

isotope vital e↵ects. Furthermore, di↵usion-reaction modelling of foraminiferal

microenvironment e↵ects (Wolf-Gladrow et al., 1999, Zeebe et al., 1999a, 2003) agrees

permissively not only with published the microelectrode observations of Jørgensen

et al. (1985) and Rink et al. (1998), but with �11B measurements of O. universa from

Hönisch et al. (2003). These authors attempted to empirically quantify the e↵ect of

symbiont photosynthesis upon shell �11B by culturing O. universa under high (315-326

µmol photons m2 s�1) and low (18-20 µmol photons m2 s�1) light levels, and observed

a 1.5 ± 0.9 h (⇠ 0.2 pH unit) o↵set between the two treatments, which is perhaps

lower than expected. However, once the increased alkalinity of the high [B] culture

solutions is accounted for, these observations agree with modelled values (Zeebe et al.,

2003). Averaged microenvironment pH alteration from micro-electrode observations of

G. sacculifer (i.e. mean of light and dark conditions, accounting for typical ratios of

day:night calcification Jørgensen et al., 1985, Lea et al., 1995) is permissively

compatible with the + ⇠ 0.8 h o↵set in �11BCaCO3 from �11BB(OH)�4
observed in G.

sacculifer and G. ruber (Foster, 2008), if it is assumed ‘light’ conditions seen by open

ocean, lower mixed-layer G. sacculifer are lower than P
max

1(400 µEinst m�2s�1

Jørgensen et al., 1985). Furthermore, MC-ICPMS analysis of Neogloboquadrina

dutertrei (Foster, 2008) and N. pachyderma (Yu et al., 2013) - non-symbiont-bearing

planktic foraminifera - produced values of �11B below that of �11BB(OH)�4
, consistent

with the imprint of a microenvironment altered by respiration and calcification only.
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Finally, microelectrode measurements from the microenvironments of low metabolic

rate, symbiont-barren benthic foraminifera suggest pH perturbation is minimal (Glas

et al., 2012a), which would corroborate the lack of vital e↵ect in �11B observed by Rae

et al. (2011).

As such, microenvironment-driven vital e↵ects in �11B would appear to be

well-founded, and have the potential to explain many observed geochemical

phenomena in foraminiferal tests, in terms of boron isotopes (Zeebe et al., 2003,

Hönisch et al., 2003), �18O (Bemis et al., 1998), �13C (Zeebe et al., 1999a), and Mg/Ca

(Eggins et al., 2004). Notwithstanding this apparent convergence of modelled

understanding and empirical data, a number of issues remain:

1. The o↵set in �11B between G. sacculifer and O. universa culture calibrations

seems too large to be explained by microenvironment e↵ects alone, as noted by

Zeebe et al. (2003). They would either imply unfeasibly high microenvironment

pH values in G. sacculifer, or pH values in O. universa that are lower than those

predicted by microenvironment models. That these calibrations were analysed in

the same laboratory suggests this o↵set is unlikely to be the result of some

interlaboratory bias.

2. Furthermore, the O. universa calibration of Sanyal et al. (1996) produced values

of �11B below those of inorganic precipitates (Sanyal et al., 2000, see Fig. 1.9

above), which, analytical issues aside, would also seem at odds with the modelled

values for O. universa.

3. Hönisch et al. (2003) report that open ocean specimens of O. universa, when

analysed via NTIMS, matched more closely not their high-light experiments, but

low-light experiments, which suggests culture experiments may not be accurately

reproducing the vital e↵ects produced in nature.

4. Model results from Zeebe et al. (2003) suggest that microenvironment pH

perturbation, and therefore any o↵set between �11BCaCO3 and �11BB(OH)�4
,

should be constant regardless of ambient pH. Thus either a) the lowered pH

sensitivity in planktic foraminifera �11B relative to B(OH)4� (discussed later in

1
Pmax is the light level at which maximum rates of photosynthesis occur, determined to be 300-400

µEinst m�2
s

�1
for G. sacculifer (Jørgensen et al., 1985) and 386 µEinst m�2

s

�1
for O. universa (Spero

and Parker, 1985).
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section 1.4.3) implies the existence of some other underlying fractionation, with

the microenvironment e↵ect superimposed onto the top (which seems unlikely;

see section 1.4.3), or b) microenvironment models may omit some crucial detail

that would see pH-sensitivity change with microenvironment alteration.

5. Central to the issue of foraminiferal biomineralisation, it remains unclear how

foraminifera apparently record microenvironment e↵ects when calcifying fluids

are so extensively modified (de Nooijer et al., 2008, 2009a,b, Bentov et al., 2009).

1.4.2.4 Size Fraction e↵ects

Not entirely unrelated to the vital e↵ects mentioned earlier (given that the mechanisms

often proposed as explanations often involve habitat, kinetic or microenvironment

changes), is that of the e↵ect of foraminiferal size on recorded �11B. While commonly

seen in �18O and �13C (e.g. Norris, 1996, Kroon and Darling, 1995, Bemis et al., 1998),

and in other trace element proxies (Ni et al., 2007, Friedrich et al., 2012), there is not

yet a wealth of data on size fraction e↵ects on boron isotope ratios in foraminifera.

Rae et al. (2011) analysed size fractions of a number of epifaunal benthic foraminifera

and found no discernible e↵ect of size upon recorded �11B signals. However, Hönisch

and Hemming (2004) noted a strong size fraction e↵ect in core-top G. sacculifer from

both the Ontong-Java Plateau and Indian Ocean; a finding which was later

corroborated by Ni et al. (2007) in Pacific, but not Atlantic, core-tops. While the

observed trends in �11B with size are comparable, the authors reach somewhat

di↵erent conclusions about their causality. Hönisch and Hemming (2004), suggest that

relatively heavier �11B in larger specimens may be linked to a shallower depth habit

during ontogeny in larger specimens, and as such a greater symbiont-derived vital

e↵ect stemming from increased light. This, they argue, is supported by increasing �13C

with size, as commonly observed in symbiont-bearing foraminifera (e.g. Oppo and

Fairbanks, 1989, Hemleben and Bijma, 1994). While they observe a correlation

between shell weight and �11B, they suggest this may be due to increased calcification

under high light conditions Spero and Lea (1993).

In contrast, Ni et al. (2007) favour a dissolution-based explanation for decreasing �11B

with size, due in part to the variability in patterns they observe between Pacific and

Atlantic core-top sites. In this scenario, isotopically lighter gametogenic calcite
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(because of its precipitation at lower light levels, colder temperatures and after the

digestion of symbionts) is less subject to post depositional dissolution, and since

smaller foraminiferal shells have a proportionally larger surface area, they su↵er a

greater relative loss of ontogenetic calcite relative to gametogenic (and thus are left

lighter in �11B). Their argument is lent further support by later findings from Seki

et al. (2010), who see a drop in �11B and B/Ca in G. sacculifer along a transect in

bottom water ⌦CaCO3 along the Ceara Rise (consistent with a dissolution e↵ect).

Meanwhile neither set of authors see a comparable dissolution e↵ect in G. ruber, as one

might expect from a species that precipitates no significant gametogenic calcite layer.

One cautionary note regarding this preferential dissolution hypothesis, however, is that

SEM images from Hönisch and Hemming (2004) and Bé (1980) appear to indicate

dissolution of the gametogenic calcite veneer in at least equal measure. Furthermore,

Hönisch and Hemming (2004) highlight that dissolution in the sediment may depend

not only on bottom water ⌦CaCO3 , but on the extent to which organic matter is being

respired within the sediment; something which is not discussed in Seki et al. (2010).

Clearly, then, more data is required to more thoroughly investigate the causes of

size-fraction e↵ects on �11B.

1.4.3 Is pH sensitivity in �11BCaCO3 equivalent to that of �11BB(OH)�4
?

Despite the increasing convergence of theoretical and empirical studies around the

Klochko et al. (2006) value of 11�10KB for boron species in seawater, as discussed

previously, some authors advocate the retention of the Kakihana et al. (1977)

fractionation factor as an empirical calibration to apply to marine CaCO3 (Hemming

and Hönisch, 2007, Hönisch et al., 2007, 2008, Katz et al., 2010). For instance, Hönisch

et al. (2007) state that 1.0194 is ‘statistically the factor that best describes the shape

and inflection of all empirical carbonate calibrated to date’. However, while it is true

that all planktic foram, coral and inorganic carbonate calibrations to date do show a

weaker-than-predicted sensitivity to pH, or in other words they would support a value

of 11�10KB< 1.0272 (see Fig. 3.1), it is incorrect to imply that there is any definitive

universality in these calibrations. Although large margins of uncertainty in planktic

foraminiferal calibrations mean that they are statistically indistinguishable (see Fig.

3.1), when one also considers the considerable disparity in the shapes of coral

calibrations (e.g. Hönisch et al., 2004, Krief et al., 2010, Trotter et al., 2011,
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McCulloch et al., 2012, Anagnostou et al., 2012), universality seems currently far from

assured. Moreover, most calibrations would in fact advocate a 11�10KB that is lower

than that of Kakihana et al. (1977). As such, its use even as a universal empirical

fractionation factor seems unfounded.

One line of evidence that is often cited as support for a value of 11�10KB for

carbonates < 1.0272 is the observed pH dependency of the �11B of the inorganic

carbonate precipitates of (Sanyal et al., 2000, see Fig. 1.9). These authors precipitated

calcium carbonate (calcite polymorph) at three di↵erent pH values, and observed a pH

sensitivity in the �11BCaCO3 that is lower than that of aqueous borate observed by

Klochko et al. (2006). Since existing (Sanyal et al., 1996, 2001, Henehan et al., 2013,

see Chapter 4) planktonic foraminiferal calibrations show pH sensitivities that are

within uncertainty of this inorganic calibration (see section 3.2.3.2), it is perhaps on

the face of it reasonable to infer that the lowered-than-aqueous pH sensitivities

observed in foraminifera are due to some inorganic fractionation inherent in

calcification of marine biogenic CaCO3. However, as discussed by Henehan et al.

(2013), no such inorganic fractionation is evident in epifaunal benthic foraminifera

(Rae et al., 2011) and, as we show in Chapter 4, neither is it likely in symbiont-barren

planktic foraminifera. It seems probable therefore that the lowered pH sensitivity in

planktic foraminiferal calibrations may be explained by some vital e↵ect (for example,

the action of photosynthetic symbionts, see section 1.4.2.3), but clearly the inorganic

precipitation experiments of Sanyal et al. (2000) would still require some explanation.

The apparently lowered sensitivity observed may be an artefact of inadequate

characterisation of pH or pK⇤
B in these experiments: the authors use NBS-bu↵er

calibrated electrodes, and do not explicitly characterise the pK⇤
B of the experimental

solutions. Alternatively, it may be an artefact of inconsistent and rapid precipitation

rates in these experiments (100 mg in between 3 and 24 hours) that are not

representative of foraminiferal calcification rates and may conceivably cause kinetic

fractionation. Finally, as discussed in section 1.4.1, although most evidence suggests

that relative di↵erences measured via NTIMS are reliable (even if absolute

measurements may not be), it is conceivable that the highly variable B/Ca ratios in

these calcite precipitates may mean the NTIMS matrix e↵ect was not consistent

between analyses (see Foster et al., 2013).

With these issues in mind, in a collaboration with Asst. Prof. Sang-Tae Kim and Miss
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Figure 1.9: Published bulk planktic foraminiferal culture and inorganic precipitate
experiments, plotted in �11B-pH space. For the purposes of graphical representation,
the data were normalised to a �11Bsw= 39.61 h (both panels), and to a temperature of
26 �C and a salinity of 37.2 psu. The black line depicts the value of aqueous �11BB(OH)�4
at these environmental conditions, with the dotted lines representing the error value on
the value of 11�10KB (± 0.0006) in seawater at 25 �C reported by Klochko et al. (2006).
Coloured calibration lines are best fits through calibration data, varying 11�10KB and

a from Equation 3.4; see section 3.2.3 for more details.

Christa Klein Gebbinck at McMaster University, the systematics of boron

incorporation into carbonates have been re-examined. Aragonite was precipitated at

across a range of pH (at 25 �C), at rates representative of natural biomineralisation

processes (< 10 mg/day; an order of magnitude lower than previous experiments), and

slow enough to ensure equilibrium for O and C isotopes (and by inference, B, since

equilibration times for B are shorter Zeebe et al., 1999b). The approach used to

precipitate CaCO3 was an adapted constant addition method (Kim et al., 2006, 2007,

as previously used to examine oxygen and carbon isotope fractionations). In these

experiments, ionic strength was similar to natural seawater (I = 0.7 mol kg�1), and as

such pK⇤
B could be calculated via Dickson (1990). Boron isotope measurements were

taken from mother solutions, as well as from the precipitates themselves. While more

data at low pH values is still being collected, preliminary results are shown in Fig.

1.10. These data illustrate that when precipitated at rates comparable to those seen in
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biology, when pK⇤
B is well characterised, and when samples are analysed via

MC-ICPMS, the �11B of inorganic precipitates reflect ambient �11BB(OH)�4
without

any fractionation.

While these preliminary data were not gathered in time to be incorporated into

discussions within Henehan et al. (2013), when coupled with findings from

symbiont-barren species (Chapter 4) and epifaunal benthic foraminifera (Rae et al.,

2011), they constitute a strong body of evidence that suggests there is no underlying

inorganic fractionation of �11B inherent in the calcification process, and that the value

of 11�10KB reported by Klochko et al. (2006) is reliable and representative of

fractionation between species in CaCO3. Therefore it seems preferable to look to vital

e↵ects to explain reduced pH-sensitivities in published planktic foraminiferal

calibrations.

One further controversy relating to the pH sensitivity of �11BCaCO3 is the suggestion

that it may change with temperature. This is based on the assertion that the

fractionation factor (11�10KB) between boron species in seawater is temperature

dependant. Given that the fractionation factor is a function of parameters such as

molecular vibrational frequency, which varies with temperature, most theoretical

investigations into the value of 11�10KB advocate variation with temperature (e.g.

Kakihana et al., 1977, Rustad et al., 2010, Zeebe, 2005). However, as Zeebe (2005)

discusses, the sensitivity of theoretically-derived values of 11�10KB to temperature

depends largely on the derivations of molecular forces, and hence vibrational

frequencies, used in the calculation (see Fig. 1.11). Since no single method of

calculation can be considered definitive, it is as yet impossible to reliably characterise

the temperature dependence of 11�10KB via theoretical calculations.

Given these complications, then, it is preferable to look to empirical measurements. In

their experimental derivation of 11�10KB, Klochko et al. (2006) did not observe any

clear temperature e↵ect on the value of 11�10KB. That said, they cannot conclusively

discount the possibility: their analyses were carried out at only two temperatures, and

the high margin of uncertainty for the published 40 �C estimate could permissively

accommodate a variation of 11�10KB with temperature. As a result of this uncertainty,

some reconstructions have opted to incorporate a (somewhat arbitrarily assigned)

temperature-dependence for 11�10KB (e.g. Hönisch et al., 2008, Raitzsch and Hönisch,
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Figure 1.10: A new calibration, in preparation, for inorganic aragonite precipitates.
Although as yet we have no data at low pH, it would appear that these new precipitates
show little or no fractionation of �11BB(OH)�4

upon incorporation into CaCO3. The data

are shown in both �11B-pH space (Panel A) and �11BCaCO3 -�
11BB(OH)�4

space (Panel

B, see section 3.2.3.2 for further explanation). Note also that these data are normalised
to �11Bsw=39.61h, for greater ease of comparison with measurements from natural

systems.
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Figure 1.11: Depending on the method used to derive 11�10KB mathematically, both
absolute values and their variation with temperature will di↵er. Modified after Zeebe
(2005), this plot illustrates the varying temperature dependence of three contrasting

derivations of 11�10KB .

2013). However, as yet there are no published data that unequivocally show a

temperature dependence in foraminiferal �11B (although suggested by Wara et al.

2003, their argument is based on potentially circumstantial correlations). Furthermore,

measurements of benthic forams (Rae et al., 2011, Supp. Fig. 3) do not support a

discernible temperature-dependence of 11�10KB (see Fig. 1.12). Extending the Klochko

et al. (2006) experiments at a greater range of temperatures and with more replicates

per treatment might serve to solve the matter more definitively, but at this point it

seems wiser to defer to empirical observations, all of which suggest no discernible e↵ect

of temperature upon 11�10KB within the typical range of ocean temperature.
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Temperature dependent 11-10KB
11-10KB = 1.0272

Figure 1.12: Modified from Rae et al. (2011), this plot shows that without any tem-
perature e↵ect on 11�10KB (left panel), observed �11B in epifaunal benthic foraminifera
agrees with that of ambient �11BB(OH)�4

. Incorporation of the temperature dependence

of 11�10KB inferred by Hönisch et al. (2008) results in substantial deterioration in fit.

1.4.4 The B/Ca proxy: Drivers of boron incorporation in planktic

foraminifera

Like the �11B-pH proxy, B/Ca ratios in foraminifera are thought to be driven by pH

and carbonate system changes in the ocean, as a result of well understood aqueous

chemistry (summarised in sections 1.3.1 and 1.3.2). However, it is clear that pH is

unlikely to be the only control on boron incorporation (see Allen and Hönisch, 2012,

for a review). Instead, temperature (Wara et al., 2003, Yu et al., 2007b, Tripati et al.,

2009, 2011), salinity (Allen et al., 2011, 2012), foraminiferal physiology and ontogeny

(Ni et al., 2007, Allen et al., 2011, 2012), crystal surface processes (Hemming et al.,

1995, Hobbs and Reardon, 1999) and post-depositional dissolution (Seki et al., 2010,

Coadic et al., 2013) have all variously been suggested as dominant controls. In contrast,

in benthic foraminifera, existing field calibrations do seem to favour a strong carbonate

system control on B/Ca ratios (Yu and Elderfield, 2007, Yu et al., 2010, Rae et al.,

2011), albeit only through the parameterisation �[CO2�
3 ], for reasons that are not

entirely clear (Yu and Elderfield, 2007). Given species-specific di↵erences, the apparent

disagreement between controls on planktic and benthic foraminiferal B/Ca, the range

of alternative drivers for boron incorporation suggested for planktic foraminifera and

the lack of basis in aqueous boron chemistry for any correlation with �[CO2�
3 ], it is
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clear that B/Ca ratios in foraminiferal calcite are not simply dictated by the inorganic

speciation of boron and DIC in seawater. Thus there remain fundamental gaps in our

understanding of the controls on boron incorporation into foraminiferal CaCO3.
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Figure 1.13: While cultured O. universa show a strong relationship with carbonate
system/pH related parameters (Panels A-C), there are strong species o↵sets (all panels),
suggesting perhaps some biological control and/or unidentified controls on B/Ca. In
addition, some datasets (G. inflata and G. bulloides, Panel D) hint at a temperature
e↵ect on B/Ca, and others (e.g., cultured O. universa, Panel E) demonstrate a salinity
dependence. Data shown are from (Foster, 2008, G. ruber, G. sacculifer, core-top), (Yu
et al., 2007b, G. inflata, G. bulloides, core-top), (Hendry et al., 2009, N. pachyderma,
sediment trap) and (Allen et al., 2011, O. universa, cultures). Modified from Allen and

Hönisch (2012)

The first of these suggested drivers, temperature, should influence boron incorporation

through its influence on K1, K2 and KB constants (Zeebe and Wolf-Gladrow, 2001),

which in turn alter
B(OH)�4
HCO�

3
ratios in seawater. However, this e↵ect is small, and likely

beyond the limits of analytical detectability. Despite this, numerous studies (Wara

et al., 2003, Yu et al., 2007b, Tripati et al., 2009, 2011) still point to temperature as a

major driver of B/Ca ratios in planktic foraminifera. Given that neither cultures of O.

universa between 18 - 26 �C by Allen et al. (2011), nor cultures of G. ruber and G.

sacculifer from 24 - 30 �C by Allen et al. (2012) show a significant relationship

between B/Ca and temperature, however, this seems unlikely. Instead observed

temperature dependencies are likely either an artefact of describing B/Ca ratios in
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terms of KD (KD = B/Ca

B(OH)�4 /HCO�
3
, as in Yu et al., 2007b, Tripati et al., 2009), which

may produce artificial relationships (due to the e↵ect of temperature on the

denominator, or the incorporation of an inherent SST-pCO2 relationship; see Allen and

Hönisch, 2012), or alternatively a product of the correlation of temperature with other

parameters, such as [CO2�
3 ], as may be the case in Yu et al. (2007b). Furthermore,

down-core correlations of B/Ca with Mg/Ca-derived SST (as in Wara et al., 2003, Yu

et al., 2007b) could arise coincidentally, as a result of some unknown inorganic process

such as paired substitution, or as a result of diagenetic loss of trace elements (Coadic

et al., 2013, Dekens et al., 2002), and should not be taken as proof of a temperature

e↵ect on B/Ca in the face of evidence from cultures that disagrees.

As with temperature, salinity will alter the equilibrium constants of seawater, and in

turn should a↵ect
B(OH)�4
HCO�

3
, and hence B/Ca. However, Allen et al. (2011, 2012) found

salinity to have a much larger e↵ect on B/Ca ratios in planktic foraminifera than that

expected from the alteration of equilibrium constants alone. This salinity e↵ect might

be partially explained by an increase in [B]
sw

at high salinities: Allen et al. (2011) note

that increasing [B(OH)4�] by raising total [B]
sw

at a constant pH resulted in a

disproportionately large response in B/Ca compared to experiments where [B(OH)4�]

was increased through pH-dependent speciation. This disproportionate e↵ect of [B]
sw

may be a product of competition between B and other ions (e.g. CO2�
3 , or

alternatively, other impurities- see below) for incorporation sites. However, it is also

possible that increasing salinity may significantly raise B/Ca without any elevation of

[B]
sw

. For example, Kitano et al. (1978a) found that boron incorporation into

inorganically precipitated CaCO3 rose with the addition of pure NaCl (i.e. with no

concurrent rise in [B]
sw

), which suggests that there is some other e↵ect, perhaps linked

to ionic strength a↵ecting crystal surface processes (e.g. by raising the activities of the

reactants), or ion pairing in solution.

Indeed, crystal surface processes have been shown to have a strong e↵ect on boron

incorporation into inorganic precipitates. Hemming et al. (1995) highlight that

increased boron incorporation in inorganically-precipitated aragonite (where, they

argue, B is incorporated in tetrahedral form without need of re-coordination, following

Sen et al., 1994) relative to calcite is evidence for the kinetic requirements of boron

re-coordination being an incorporation-limiting factor. Boron doping in inorganic

precipitation experiments (e.g. Ruiz-Agudo et al., 2012) disrupts orderly crystal
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growth patterns (see Fig. 1.14), illustrating that incorporation of boron necessitates

reorganisation of lattice and growth face structures. These studies suggest that slower

rates of calcite crystal precipitation are key to the levels of B incorporated, as they

permit more complete re-coordination of tetrahedral boron into trigonal form. In

addition, Hemming et al. (1995) and Hemming et al. (1998) also suggest that boron

incorporation may be dictated by the availability of defect or anion sites, which in turn

is dependent on both the structure of the growing crystal face, and the degree to which

these sites may be occupied by other competing impurities. In this way

crystallographic processes or other chemical substitutions that might drive an increase

in the number of defects sites should produce elevated B/Ca ratios. Later studies

rea�rm the importance of crystal growth processes in boron incorporation, including

Hobbs and Reardon (1999) and Ruiz-Agudo et al. (2012). It is perhaps surprising,

then, that these sorts of influences have been largely overlooked by the

palaeoceanographic community.

Ω=1.7   pH= 8.5   [B]=0 Ω=1.7   pH= 9.5   [B]=0 Ω=1.7   pH= 9.5   [B]=45ppm

Figure 1.14: Atomic force microscopy (AFM) imagery illustrates the e↵ect of aqueous
boron on growing hillocks of calcite. Elevated pH without the addition of boron causes
elongation of obtuse growth steps due to the dehydration of Ca2+ ions (centre). The
presence of boron (right) retards obtuse step growth (the step at which boron is more

readily incorporated). Images modified from Ruiz-Agudo et al. (2012).

A final inorganic factor which may a↵ect the recorded B/Ca of foraminifera is that of

post-depositional alteration: dissolution and recrystallisation. Ni et al. (2007) note

decreasing TE/Ca ratios in smaller size fractions of G. sacculifer and G. ruber, which

they interpret as loss of impurities with dissolution (because smaller tests have a large

surface:volume ratio and are more susceptible to dissolution). More conclusive,

however, are the data of Seki et al. (2010) and Coadic et al. (2013), that show that

B/Ca decreases systematically long depth transects, as waters at the sediment
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interface become more corrosive. Any such dissolution e↵ect could constitute a

significant barrier to the successful application of the B/Ca proxy, particularly over

large events such as the PETM, where the lysocline may have fluctuated and the

intensity of deep-sea carbonate dissolution may have varied.

In addition to these multiple inorganic processes, the life processes of the foraminifera

must also introduce vital e↵ects in B/Ca ratios. The large interspecific di↵erences in

B/Ca between planktic foraminifera (see for example Allen et al., 2012), and between

planktic and benthic foraminifera (see for example Foster, 2008), show that boron

incorporation must be (by some unknown means) biologically mediated. The di↵erence

in B/Ca between various species of planktic foraminifera could be consistent with

existing theories of microenvironment alteration (see Section 1.4.2.3). Firstly,

increasing B/Ca from O. universa<G. sacculifer<G. ruber is similar to the increase in

�11B between these species (see Chapter 4), and indeed the shallowing depth habitats

(and increasing illumination and symbiont photosynthesis) of these species (Hemleben

et al., 1989). Secondly, symbiont bearing foraminifera record higher B/Ca ratios than

symbiont barren foraminifera, which would be consistent with a lower

microenvironment pH (and thus
B(OH)�4
DIC ) in those foraminifera that do not possess

photosynthetic symbionts. Thirdly, increasing B/Ca with size fraction, as seen by Ni

et al. (2007) and Hönisch and Hemming (2004), if not caused by post-depositional

dissolution, might be caused by intensification of vital e↵ects with growth, as suggested

by Henehan et al. (2013). Finally, observed patterns of intratest variability are

permissively consistent with day:night microenvironment pH fluctuations (O. universa

LA-ICPMS profiles; Allen et al., 2011) or pre-gametogenic expulsion of symbionts (G.

sacculifer final chambers; Allen et al., 2012). That said, the scale of disparity in B/Ca

between some benthics and planktics (a 2⇥ to 4⇥ increase in benthics) might imply

some di↵erence in biomineralisation mechanisms, since the microenvironment of

symbiont barren benthic foraminifera experiences no pH elevation (Glas et al., 2012a).

Clearly the controls on boron incorporation are complex and potentially numerous. For

B/Ca to prove valuable as a proxy, there is considerable work to be undertaken. Allen

and Hönisch (2012) make some very useful suggestions with regards research priorities,

namely: 1) determining environmental controls, 2) investigating size-fraction e↵ects, 3)

establishing species specific calibrations, 4) determining biological processes that a↵ect

B uptake, and 5) constraining past seawater [B]. As these authors state, “in Pleistocene
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down-core records, planktic foraminiferal B/Ca exhibits species- and site-specific

o↵sets but no consistent temporal pattern”, illustrating that B/Ca ratios are some way

o↵ being a reliable proxy for the past carbonate system, and remain enigmatic.

1.5 Aims and Objectives

1.5.1 Aim 1: Examining the sources of vital e↵ects, and lowered

pH-sensitivity, in foraminiferal �11B

As discussed in section 1.4.2, there are a number of possible explanations to explain

the incongruity between planktic foraminiferal �11B and that of ambient aqueous

B(OH)4�. Of these, perhaps the most well supported is the concept of

microenvironmental carbonate system perturbation, as it is consistent with

microelectrode observations (Jørgensen et al., 1985, Rink et al., 1998, Köhler-Rink and

Kühl, 2000, 2005, Glas et al., 2012b), o↵sets between symbiont-bearing and

symbiont-barren species (e.g. Hönisch et al., 2003, Foster, 2008), the e↵ect of light

intensity (Hönisch et al., 2003), di↵usion-reaction models (Wolf-Gladrow et al., 1999,

Zeebe et al., 1999a, 2003) and indeed vital e↵ects in other proxy systems (Bemis et al.,

1998, Zeebe et al., 1999a, Eggins et al., 2004). Despite this strong empirical basis, a

number of issues relating to vital e↵ects remain unexplained (see section 1.4.2.3). The

main overarching aim of this PhD project, therefore, is to ascertain the cause(s) for

foraminiferal vital e↵ects in �11B. Under the umbrella of this main goal are a number

of more specific issues that this PhD project aims to address:

• Firstly, this project aims to test how much existing NTIMS species calibrations

be relied upon as characterisations of vital e↵ects, given analytical issues

discussed in section 1.4.1. This seems particularly pertinent given a) a large

o↵set between O. universa and G. sacculifer calibrations (Sanyal et al., 1996,

2001) that is di�cult to explain via existing microenvironment models and b) O.

universa’s calibration (Sanyal et al., 1996) being lighter in �11B than inorganic

carbonate (which again is counter to microenvironment models; Zeebe et al.

2003). In order for models of vital e↵ects to be well-grounded, we must be sure of

absolute values of �11B, not only relative di↵erences.
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• Secondly, this project aims to explore just how applicable laboratory culture

conditions (and thus in vitro calibrations) are to open ocean conditions. For

example, Hönisch et al. (2003) showed that towed O. universa from Hönisch

et al. (2003) did not agree with high-light culture samples (i.e. typical conditions

in calibration studies), but with low-light treatments. Considering also the

possibility of geographical variations in foraminiferal morphospecies (e.g. Morard

et al., 2009) and even proxy calibrations (e.g. Marr et al., 2011), this project aims

to combine insights from cultures with data from globally distributed core-tops,

tows and sediment traps to permit greater confidence in conclusions drawn.

• Thirdly, this project aims to investigate what processes lie behind the lowered

pH-sensitivity seen in planktic foraminiferal calibrations (Sanyal et al., 1996,

2001). Are they the result of some fractionation inherent in the incorporation of

boron into CaCO3, or might they instead be a product of either analytical

problems or microenvironmental alteration? The new inorganic calibration

discussed above (Fig. 1.10) already goes some way towards this goal, but

comparison of pH-sensitivities in symbiont-barren and symbiont-bearing

foraminifera (measured via MC-ICPMS) are also important since boron

incorporation processes in foraminiferal calcite and inorganic aragonite

precipitates may be di↵erent.

1.5.2 Aim 2: Extending the applicability of the �11B-pH proxy

through species-specific calibrations

As pointed out by Hönisch et al. (2007), even if the drivers of deviation from aqueous

theory are not fully understood, provided reliable species-specific calibrations are

employed, this does not preclude successful application of the boron isotope-pH proxy.

Prior to the commencement of this PhD project, however, only two species of

foraminifera had been calibrated, and even these calibrations carried problems (for

example the ill-defined interlaboratory biases discussed in section 1.4.1).

One of the main objectives of this study, therefore, was to expand the number of

planktic foraminiferal species for whom �11B-pH relationships have been reliably

calibrated, thereby expanding the possibilities for down-core palaeo-pH and CO2

reconstruction.
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Given that it is consistently seen to be the shallowest-dwelling of all tropical planktic

foraminifera, and as such better records mixed layer (and, assuming air-sea

equilibrium, atmospheric) CO2 levels, Globigerinoides ruber is an ideal subject for

palaeo-pH reconstruction. However, due to the challenges inherent in culturing this

species in large numbers (Spindler et al., 1984, Hemleben et al., 1987), no calibration

for this species was available. As such, the first aim of this project was to calibrate the

�11B-pH relationship in G. ruber (Chapter 3), to permit more confidence in pH

reconstructions, and test the assertion by Foster (2008) that this species shows a

sensitivity similar to aqueous �11BB(OH)�4
.

O. universa was the first species of foraminifera to be calibrated (Sanyal et al., 1996).

However, there are a number of issues with this calibration, including being lighter in

�11B than inorganic carbonates (Sanyal et al., 2000), which is seemingly counter to

modelled and observed microenvironment alteration (Zeebe et al., 2003, Rink et al.,

1998). Thus one aim of this project was to calibrate this species via MC-ICPMS,

verifying the existing NTIMS calibration and therefore extending the applicability of

the �11B-pH proxy to this ubiquitous and easily picked species.

Finally, in higher latitude oceans and some periods of geological time (e.g. the

Eocene-Oligocene, Norris, 1996, Wade, 2004), symbiont-bearing species are not found.

Thus it was imperative during the course of this PhD to calibrate a symbiont-barren

species, not only to extend the applicability of the �11B-pH proxy to the calibrated

species, but to provide a basis for extension to other extinct symbiont-barren species.

Given it is normally interpreted as a shallow-dwelling symbiont-barren species

(Hemleben et al., 1989), Globigerina bulloides was the preferred candidate. Together

these three calibrations would more than double the number of species available for use

in palaeo-pH reconstructions.

One final consideration in extending the �11B-pH proxy to more species and more sites

is whether there is a need to tightly constrain size fractions for boron isotope analysis.

Since sample size limitations may often prove restrictive in downcore applications of

the �11B-pH proxy, this project set out to understand the mechanisms behind

size-fraction changes, or at the very least characterise them for individual species. In

doing so, this PhD project aims to extend pH reconstructions to sites where sample

availability is limited (in species where �11B is found not to vary with size), and
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produce more accurate pH reconstructions elsewhere (in species where too broad a

sampled size range may otherwise introduce error).

1.5.3 Aim 3: Testing the applicability of the B/Ca proxy

Since the analysis of boron isotope ratios is not straightforward (see section 1.4.1), and

since both the �11B and B/Ca ratio proxies should be driven by the same basis in

aqueous chemistry (see Section 1.3.1 above, and Hemming and Hanson, 1992), it is

unsurprising that the B/Ca proxy has garnered some considerable attention amongst

the palaeo-proxy community (e.g. Yu and Elderfield, 2007, Brown et al., 2011, Tripati

et al., 2009, 2011). However, unlike the �11B-pH proxy, that agrees reasonably well

with its theoretical basis (Fig. 1.10), the B/Ca proxy appears to show a somewhat less

clear picture. While in epifaunal benthic foraminifera, the carbonate system does

appear to control B/Ca ratios (Yu and Elderfield, 2007, Brown et al., 2011, Rae et al.,

2011) the best correlate is �[CO2�
3 ], with

B(OH)�4
DIC and

B(OH)�4
HCO�

3
relatively poorer

correlates. In planktic foraminifera, meanwhile, a number of other factors have been

proposed as controls, including temperature and salinity (see Allen and Hönisch, 2012,

for review). Clearly then, the controls on boron incorporation in foraminifera are not

fully understood. One of the main aims of this PhD project, therefore, was to test the

controls on foraminiferal B/Ca ratios, in culture and (crucially) in in situ conditions

(using core-tops, tows and sediment traps), to determine the viability of B/Ca ratios

as a palaeo-carbonate system proxy. In addition, by determining the drivers of boron

incorporation in foraminifera, this PhD project aims to shed further light on the

processes of biomineralisation and trace element incorporation. This is important since

it is unclear at present how microenvironment e↵ects discussed above (that seem to be

well supported by empirical evidence) can be compatible with known internal pH

modifications (section 1.4.2.2).

1.6 Thesis plan

• Chapter 2 documents the methods used to measure boron isotopes via

MC-ICPMS at the University of Southampton, typical reproducibility and

comparability to other laboratories.
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• Chapter 3 describes the calibration of �11B-pH relationships in the

shallow-dwelling planktic foraminifera G. ruber, incorporating culture

experiments from Eilat and measurements from core-tops, tow and sediment trap

samples. Much of this chapter was published as part of Henehan et al. (2013),

which is attached in Appendix C.

• In Chapter 4, calibrations are presented for both the deep-dwelling

symbiont-bearing species O. universa and the symbiont-barren species G.

bulloides, greatly extending the geographical reach of the �11B-pH proxy.

Insights on vital e↵ects from these two calibrations are discussed.

• Chapter 5 details an investigation into the controls on B/Ca ratios in G. ruber,

applying multivariate statistical approaches to discern which environmental

parameters control boron incorporation in this planktic foraminifera.

• in Chapter 6, the findings of chapters 3-5 are discussed, with reference to the

aims set out at the beginning of this PhD project. In addition, some future

avenues of research, and preliminary data from these areas, are presented.



Chapter 2

Methods: Analysis of Boron

Isotopes via MC-ICPMS

2.1 Introduction

Analysis of boron isotopes in CaCO3 is not a trivial matter, and it is perhaps for this

reason that this isotope system has not been more widely studied and applied. The

first measurements of boron isotopes were largely focussed on the requirements of the

nuclear industry (because of the large cross section of 10B; Bartholomew and Campion,

1957, it is an important resource for neutron capture). Early measurements of boron

isotope composition (barring initial attempts with Gas Source Mass Spectrometry, e.g.

Parwel et al., 1956) used Positive Thermal Ionisation Mass Spectrometry (PTIMS),

measuring the Na2BO
+
2 ion (e.g., Shima, 1963, Catanzaro et al., 1970). Sample sizes

used in these early analyses were typically ⇠ 5 µg B. While adequate for the analysis of

nuclear materials and some natural minerals, these requirements would have rendered

analysis of foraminiferal carbonate unfeasible (typical sample sizes analysed at NOCS

are 5 - 20 ng B). While PTIMS has been refined somewhat since these early analyses

(for example with the use of Cs2BO
+
2 ions, multicollector TIMS instruments, and the

use of di↵erent filament materials), and has produced some of the highest precision

boron isotope measurements to date (e.g. ± 0.11 h 2� external reproducibility for

>50 ng B; Deyhle, 2001), sample size requirements for this method are still somewhat

prohibitive and have limited the applicability of the technique with regards

45
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foraminiferal carbonates. That said, recent advances, for example a mannitol ’pre-bake’

step (Ishikawa and Nagaishi, 2011), may yet serve to alleviate this issue somewhat.

The principle advance in the measurement of boron isotopes, with regards to its

palaeoceanographic application, was the development of Negative Thermal Ionisation

Mass Spectrometry, or NTIMS. This method achieves greater ionisation e�ciencies,

and thus allows for the analysis of sample sizes (⇠ 1 ng; Hemming and Hanson, 1994).

With the development of this technique the application of the boron isotope system to

marine carbonates became more feasible: while early measurements suggested highly

variable values of �11B in marine carbonates (Vengosh et al., 1991), with improved

accuracy �11B measurements in marine carbonates converged on values close to the

�11B of aqueous B(OH)4� ion (Hemming and Hanson, 1992). This observation led

Hemming and Hanson (1992) to propose that �11BCaCO3 may be a tracer of past ocean

pH. Building on this observation, throughout the 1990s and early 2000s several

influential works utilised NTIMS measurements of �11B in foraminiferal carbonates to

reconstruct atmospheric CO2 changes through the Phanerozoic (e.g. Sanyal et al.,

1995, Palmer et al., 1998, Pearson and Palmer, 1999, 2000, Hönisch and Hemming,

2005b). However, problems with boron isotope analysis via NTIMS are numerous

(including large in-run fractionation, mass interferences, and matrix-specific di↵erential

ionisation behaviour between standards and samples; Aggarwal and Palmer, 1995,

Sanyal et al., 1995, Foster et al., 2006) and have resulted in considerable inconsistencies

in measured �11B values between laboratories (see Gonfiantini et al., 2003, Foster

et al., 2006, Hemming and Hönisch, 2007, Foster et al., 2008, Foster, 2008, Ni et al.,

2010, Rae et al., 2011, Foster et al., 2013). While some authors have taken steps to

improve the NTIMS technique, for example by oxidative treatment prior to loading

(Vinson et al., 2011), we instead take a di↵erent approach, using the Multicollector

Inductively-Coupled Mass Spectrometry (MC-ICPMS) method of Foster (2008).
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2.2 Analysis of Boron Isotopes via MC-ICPMS at the

National Oceanography Centre, Southampton

2.2.1 Blank reduction strategies

Given that boron is a ubiquitous contaminant, prior measures to reduce analytical

blank are critical to the production of accurate �11B data. Such measures must include

a) reduction in airborne particulate B blank, b) purification of all reagents involved in

sample preparation, c) e↵ective cleaning protocols for sample vessels and d) correct

analyst practices. Airborne particulate B contaminant levels may be mitigated via the

installation of boron-free HEPA filters in air-handling feeds to geochemical preparation

and instrument labs. In addition, sample preparation should be carried out in

over-pressured laminar flow hoods, with secondary boron-free HEPA filters installed.

Installation of these filters (manufactured by AAF international) at NOCS in the

Spring of 2010 reduced fall-in blank from 450 pg/hr to 8 pg/hr: evidence of their

e�cacy.

Boron in impure reagents is another source of procedural blank that must be

mitigated. Because boric acid (B(OH)3) has no charge, it is not removed e�ciently by

conventional reverse-osmosis laboratory water purification techniques. As such, a

Milli-Q Q-Gard ( c� EMD Millipore) pack is used; this system uses electro-deionisation

and a chelating adsorbent to improve retention of B (Darbouret and Kano, 2000). All

acids used during column chemistry (section 2.2.2) and sample preparation (section

2.3) are Teflon-distilled to ensure high levels of purity, and Na-acetate bu↵er added to

samples prior to column chemistry is first passed through boron-specific Amberlite

IRA-143 resin (Kiss, 1988) to remove B.

Another requirement of boron isotope geochemistry is the adherance to e↵ective vial

cleaning protocols. Plastic centrifuge tubes and pipette tips are cleaned overnight in

⇠3 M HCl at 80-90 �C and rinsed 3 times with Milli-Q purified water (hereafter MQ).

Subsequently, immediately prior to use, pipette tips and tubes are rinsed with 10%

Teflon-distilled HNO3 and MQ. Between uses, Teflon vials (used for sample storage

and analysis) are subject to a lengthy cleaning protocol. First, labels are removed

using acetone and vials are rinsed three times with MQ to remove remnant sample.

Subsequently, vials are physically wiped, first with MQ and then with acetone, before
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being rinsed a further three times in MQ. These are then two-thirds filled with 7M

HNO3, capped, and left to reflux at 140 �C for at least two hours. Next vials are

emptied, rinsed three times in MQ, arranged face up in a Teflon jar using tweezers and

refluxed in this jar overnight in 7M reagent-grade HNO3 at 140 �C. After this

refluxing, vials are rinsed twice in MQ and replaced upright in the Teflon jar, to be

refluxed once more in 2% Reagent-grade HNO3 overnight. Finally, Teflon is rinsed

three times in MQ, shaken dry and stored (capped) in a closed box. As a final

precaution, immediately prior to use vials are filled with 10% Teflon-distilled HNO3

and refluxed at 140 �C for at least 1 hour, and then rinsed twice with MQ. In addition,

bottles and jars used to store reagents are subject this cleaning procedure prior to use.

Besides this laboratory hardware and rigorous cleaning protocols, other more general

precautions are required to minimise potential for boron contamination. Gloves are

worn at all times, and hands are not passed over samples unless absolutely necessary.

Pipette tips are changed when switching between reagents or samples, and are never

allowed to come into contact with gloves, work surfaces, etc. Samples are kept firmly

capped, except during transfer. Columns are only handled using tweezers, and are

covered during cleaning and elution with a clean plastic beaker. Working space is kept

dry and tidy to more easily detect spillages. Solutions of high [B] (e.g. seawaters, high

concentration boric acid standards) are, where possible, handled in an extract hood,

outside of the clean laminar flow hood. Finally, laboratory is cleaned weekly (all

surfaces and floor wiped down with MQ).

To monitor cleanliness and potential for sample contamination, a total procedural

blank (TPB) of 0.5M HNO3 and bu↵er is included in each batch of columns. This

TPB is then analysed for [B] and �11B. Typically, TPBs are ⇠ 20 pg B, and are rarely

greater than 50 pg B.

2.2.2 Boron isolation and matrix removal: column chemistry

As described by Foster et al. (2008), analysis via MC-ICPMS entails the prior isolation

of pure solutions of boron in HNO3, using columns of boron specific Amberlite

IRA-743 resin (Kiss, 1988, Lemarchand et al., 2002a). This resin has a high a�nity for

B(OH)4� ion, and as a result at high enough pH (� 5) virtually all boron is rapidly

bound (because of the rapid re-equilibration of aqueous B; Zeebe et al., 2001). Because
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of this preference for B(OH)4�, however, this resin may fractionate boron isotopes

upon elution with acid (with 11B-enriched B(OH)3 preferentially eluted; Lemarchand

et al., 2002a). Consequently, it is essential that sample elution is complete. Thus

column design and rigorous testing is crucial to the generation of accurate data. Since

a larger volume of resin requires more acid to complete elution (as a rule of thumb,

⇠24 column volumes of acid are required to elute to >99% e�ciency), small samples

requires small column volumes (lest the eluted boron solutions be too dilute).

Conversely, although theoretical boron capacity in Amberlite is high (15 µg B/µl,

Pinon et al., 1968), too small a column volume will result in boron passing through the

resin too quickly to be retained. For the routine analysis of foraminiferal samples at

NOCS, 20µl-volume columns are used.

To produce columns for boron isotope geochemistry, teflon must be heat-shrinked

around a stainless steel mould. During the course of this study, several dimensions of

shapers were trialled, and not all produced e↵ective columns. The dimensions of the

most successful design is detailed in Fig. 2.1a. Polyethylene frits of 3.8 mm diameter

(pore size 10-30 µm) are then cut using a belt-hole cutter, and firmly inserted into the

the narrow base of these shapes using a pipette tip (as in Fig. 2.1c). Columns are

trimmed on both ends so that the reservoir holds ⇠1.6 ml of solution, and such that

the column ends flush with the base of the frit (otherwise drips may be retained).

These columns are then flushed with water and acetone to remove air bubbles from

within the frit before cleaning, first in 7 M reagent-grade HNO3, then 2%

reagent-grade HNO3, then 10% Teflon-distilled HNO3 (each step refluxing overnight at

⇠135 �C). Once cleaned, ⇠ 20 µl of ground Amberlite resin (sieved to 63-120 µm) is

added to each column. MQ is then added and eluted solution is thoroughly screened

for resin leakage, either through or around the frit. Furthermore, the rate at which

fluids pass through the column must be noted: too slow and future sample preparation

time is considerably lengthened, too fast (<⇠6 minutes for 1.5 ml volume) and

fractionation may occur (due to incomplete binding of B, and preferential takeup of

10B-enriched B(OH)4�; Lemarchand et al., 2002a). Overall success rates for column

fabrication are typically < 30 %, with resin loss the most common problem.

Once a set of functioning columns has been isolated, the resin must be pre-cleaned by

passing through 15 ml of clean 0.5 M HNO3, before the boron elution profile is

characterised (following Lemarchand et al., 2002a). As aforementioned, complete
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Figure 2.1: Schematic of the dimensions of a) the stainless steel shaper upon which
teflon is shrunk, b) the resulting column, and c) the fritted column, containing ca. 20

µl of Amberlite resin (shown in yellow).

elution of boron from columns is of utmost importance; characterising elution profiles

allows methodological adjustments to be made to ensure this always occurs. To do

this, ⇠20 ng B (from matrix-free boric acid, e.g. NIST SRM 951) is added to columns,

and repeat rinses of ⇠4 column volumes of 0.5M HNO3 collected and analysed for [B]

by ICPMS. Elution profiles for typical 20 µl columns used at NOCS are shown in Fig.

2.2. While total elution is seen at ⇠480 µl, currently at NOCS 5 x 110 µl elution steps

are carried out. This is because uptake rates of the nebuliser used to introduce sample

to the Thermo Neptune MC-ICPMS are typically ⇠80-90 µl/min, and so duplicate

analysis of each sample necessitates larger sample volumes than are required for

complete elution. To further ensure all boron has been eluted, a further 110 µl of 0.5M

HNO3 is collected as a ‘tail’ during each column run. This is monitored for [B], with

relative contributions from tails greater than 0.1% of total sample B considered

suspect.

Standard column chemistry protocol applied at NOCS is outlined in Table 2.1 below.

Since retention of B by the resin only occurs at pH � 5, samples must first be bu↵ered

by addition of 2 M Na-acetate + 0.5 M acetic acid (2 ⇥ the volume of acid used in
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Figure 2.2: Elution profiles for two example 20 µl volume boron purification columns
at NOCS. Acid is added (in this example) in 90 µl increments, and complete boron
elution is seen at⇠480 µl. Profiles such as these must be constructed such that protocols

for column chemistry may be designed to ensure complete elution.

sample dissolution). Since the introduction of matrix can induce di↵erential

instrumental mass fractionation between matrix-contaminated samples and ‘clean’

standards (Je↵coate et al., 2004), it is imperative that both dissolved CaCO3 matrix

and bu↵er is rinsed o↵ fully; to this end, 10 ⇥ 160 µl of MQ are added to the columns

prior to sample elution, ensuring drops rinse the sides of the column reservoir as they

are added.

Once elution profiles are understood, and methods honed accordingly, known

standards may be passed through to ensure that columns induce no fractionation.

Prior to any foraminiferal analysis at NOCS, NIST SRM 951 (Catanzaro et al., 1970),

seawater, in-house boric acid standards (BIG-D: 14.71 h, BIG-E: 25.12 h) and

Japanese Geological Survey Porites Coral Standard (JCP-1, Okai et al., 2002) were

analysed. The results of these tests are summarised in Table 2.2 below. Testing of the

first batch of columns produced at NOCS completed these tests in the Summer of

2011. Good agreement of measured NIST SRM 951 and seawater with published

values (Catanzaro et al., 1970, Foster et al., 2010) demonstrates clearly the accuracy of

this MC-ICPMS approach.



Chapter 2: Analysis of Boron Isotopes via MC-ICPMS 52

Step Solution added Instructions
Clean columns 2 ⇥ 0.5 M HNO3 First fill to top, second

1ml
Rinse o↵ acid 2 ⇥ MQ 2 additions of 1ml
Load sample Dissolved, bu↵ered

sample
Add gently on to resin
bed

Rinse o↵ matrix/bu↵er 10 ⇥ 160 µl MQ Drip round column
circumference to rinse
walls

Collect sample 5 ⇥ 110 µl 0.5M HNO3 Add gently on to resin
bed

Collect tail 1 ⇥ 110 µl 0.5M HNO3 Add gently on to resin
bed

Clean columns 2 ⇥ 0.5 M HNO3 First fill to top, second
1ml

Rinse o↵ acid 2 ⇥ MQ 2 additions of 1ml

Table 2.1: Standard column chemistry protocol at NOCS. Between uses, columns
are stored in MQ, in screw-capped Teflon beakers. Samples and tails are collected
in airtight, screw-capped Teflon beakers (leached for >1 hour in 10% Teflon-distilled

HNO3 and rinsed twice in MQ).

Sample Material Measured �11B

NIST SRM 951 -0.01 ± 0.14 h
Seawater 39.68 ± 0.15 h
BIG-D 14.75± 0.19 h
BIG-E 25.20 ± 0.19 h
JCP-1 24.42 ± 0.17 h

Table 2.2: The results of analyses of standards and reference materials, after having
gone through column chemistry, in columns produced at NOCS. Note the close agree-
ment between measurements of NIST SRM 951 and seawaters and published values
(Catanzaro et al., 1970, Foster et al., 2010), and between BIG-D, BIG-E and JCP-
1 and long-term average values (14.71, 25.12 and 24.31 hrespectively). Uncertainty
on each �11B measurement is 2� of measurements from 10 columns. Only after this

accuracy was demonstrated were analyses of foraminifera carried out.

2.3 Foraminiferal cleaning protocols

Foraminiferal cleaning throughout is largely as described in Rae et al. (2011), in turn

based on the approach of Barker et al. (2003). Foraminifera (cleaned in batches of < 3

mg) are cracked open between two clean glass slides, ultrasonicated and rinsed

repeatedly with Milli-Q ultrapure water (18.2 M⌦) to remove clays. For tow and

sediment trap samples, where clay is not a major contaminant, as little as three rinses

were carried out (to minimise sample loss), while in larger core-top and downcore

samples, as many as nine rinses were required to remove all visible clay material.
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Culture, sediment trap and tow samples, in agreement with other culturing studies

(e.g. Russell et al., 2004), were subject to intensified oxidative cleaning (3 x 20-30 min

treatments of 250-400 µl (depending on sample size) 1% H2O2 in 0.1 M NH4OH4 at 80

�C) to account for the larger organic content. In core-tops, oxidative cleaning was

shorter (3 x 5 min) to minimise sample loss. Samples are then subject to a brief weak

acid leach in 0.0005 M HNO3 to remove any readsorbed contaminants. Finally 200 µl

of Milli-Q is added to each sample (to slow subsequent dissolution and reduce the

likelihood of leaching of B o↵ any remnant contaminants) and 0.5 M HNO3 (normally

<300 µl) added incrementally until dissolved. To further ensure no contaminant

organic or mineral matter is added to columns, samples are centrifuged for > 5 min at

1400 rpm, and the bottom ⇠ 20 µl is not taken for analysis.

Note reductive cleaning is not carried out for foraminiferal samples at NOCS because

it has been shown to be unnecessary for B (Yu et al., 2007a, Wara et al., 2003). This is

advantageous because reductive cleaning may incur further loss of sample material (see

Yu et al., 2007a). The importance of e↵ective cleaning is paramount: clay

contamination will result in leaching of adsorbed isotopically-light B from clay

minerals (see Palmer et al., 1987, Deyhle and Kopf, 2004) and may hence artificially

lighten measurements of �11BCaCO3 . Fortunately, clay contamination is easily

detectable via ICPMS on an aliquot of the same sample material (with values of Al/Ca

>⇠100 µmol/mol generally likely to result in anomalously low values of �11B) and so

contaminated samples can be recognised and omitted (Rae et al., 2011).

The influence of remnant organic matter, however, is somewhat less certain. Organics

are known to bind to boron receptor sites in the resin and to the column interior

(eventually hindering e↵ective elution through columns and resulting in slowed elution

times and high [B] in ‘tails’). During the course of this research, limited attempts were

made to better understand the e↵ect of organic contamination in samples. This

investigation involved analysis of towed (and thus organic-rich) specimens of

Globigerinita inflata from the southwest Pacific. Samples were subject to either (i)

standard oxidative cleaning as detailed above, (ii) three repetitions of this standard

oxidative cleaning, or (iii) intensified cleaning with 15 % H2O2 bu↵ered with 0.1M

NH4OH. The results are shown in Fig. 2.3: on this occasion no clear e↵ect was

observable, although the detection of any trend may be hindered by the relatively large

analytical uncertainties associated with the sample sizes used. Clearly further testing
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Figure 2.3: To test the e�cacy of oxidative cleaning, and the potential influence of
organic contaminants, cleaning tests were carried out on three splits of G. inflata towed
from the Southern Ocean. Note the large uncertainty on the strong-peroxide sample,

due in part to the loss of sample material through dissolution.

is required before the e↵ects of organics are understood, but since the addition of

organic matter shortens the operational lifespan of a column, it would be preferable to

address the problem via ICPMS, by finding a trace element/Ca ratio that may act as

an indicator for the presence of organic matter (for example P, Se, Cd or Zn).

2.4 Using the Thermo Neptune MC-ICPMS

2.4.1 Hardware used

Boron isotope analysis is carried out on a Thermo Neptune MC-ICPMS at NOCS. This

instrument is ideal for boron isotope analysis due to the high sensitivities for B that

can be attained (6-8 pA using 1011⌦ resistors, or 600-800mV, for a 50ppb B solution),

and the ease with which the introduction system can be adapted and customised.

Platinum-nickel sample cones and nickel X-geometry skimmer cones are used, for best

sensitivities, and faraday cups H3 and L3 used for 11B and 10B respectively.
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Wash-out of boron is poor compared to other elements (Al-Ammar et al., 2000), and

consequently the sample introduction system used is of crucial importance. Following

Foster (2008), a Teflon barrel spray chamber is used, and 2-3 ml/min NH3 gas is added

to the spray chamber immediately after the nebuliser, following Al-Ammar et al.

(2000). This raises the pH of the spray chamber interior, and converts volatile boric

acid to the less volatile ammonium borate. While Al-Ammar et al. (2000) observe an

increase in sensitivity with the addition of NH3, no such increase is observed here; in

fact NH3 addition can result in some small loss of sensitivity (typically <10%).

However, with the addition of NH3 washout time is dramatically reduced (by a factor

of >5 Al-Ammar et al., 2000), with washout to less than 2% signal level typically

possible within ⇠ 2 min. Washout times are measured before each analytical session to

ensure e�cacy.

Fused teflon nebulisers of uptake ⇠ 0.75-95 µl/min (manufactured by ESI Ltd.) are

used to introduce the sample as a fine aspirated mist into the chamber. Nebulisation

e�ciency and stability is fundamental to the generation of a stable, high-intensity

signal: droplet size a↵ects sample transport e�ciency (i.e. how much sample is

delivered to the plasma, and thus sensitivity) and plasma stability (too much sample

solution may cause plasma to flicker). Fine mists of consistent, uniform droplet size are

preferable. These nebulisers were found to o↵er the best stability when in

self-aspirating mode. Unfortunately, in order to pass the required ⇠1.15 L/min sample

gas flow through these nebulisers, it is necessary to operate at back pressures above

their designed specification. As a result, they are vulnerable to damage and

degradation (typically due to blocking or buckling of the internal capillary). During

the course of this study these nebulisers were found to have a limited lifespan of

around 4-6 months under typical usage.

2.4.2 Instrument tuning

Critical to the generation of boron isotope measurements via MC-ICPMS is adequate

tuning. This is particularly pertinent given relatively low sensitivities and large and

variable instrumental mass fractionation (⇠15%/amu) seen for boron. At NOCS, the

instrument is left to ‘warm up’ at approximate tuning conditions for 1-2 hours before

tuning (using a 50 ppb solution of NIST SRM 951). First, inlet system (primarily
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Figure 2.4: Peak shape is optimised using focus quad zoom optics to ensure a square
shape with flat top, and minimal tailing on either side of the peak.

torch position and sample gas input) and source lenses are tuned for maximum

sensitivity. Peak shape may then be optimised using ‘shape’ and ‘focus’ under source

lenses, and focus quad; best peak shapes (as illustrated in Fig. 2.4) typically require

‘shape’ to be tuned to +15 to +30 above its optimal intensity. While it possible (and

perhaps desirable) to quantitatively assess quality of peak shape (assessing overall

symmetry and flatness of the peak through comparison of signal intensity at masses

equidistant from peak centre, for example), in practice at the NOC, qualitative

assessment has always been su�cient to produce accurate and reproducible data.

Besides peak shape and intensity, it is critical that machine induced isotopic mass

fractionation is as stable as possible. To this end, the instrument is tuned for stability

by analysing (in blocks of 15 measurements) the isotopic ratio of NIST SRM 951

across a range of sample gas input levels. If properly tuned and nebulising e�ciently, it

should be possible to detect a stability ‘plateau’ within which a small change in sample

gas flows will not result in large changes in mass fractionation (see Fig. 2.5). The

position and character of this plateau will vary between analytical sessions (e.g. Fig.

2.5, A-C), with (among other things) nebuliser condition, condition of guard electrode,

etc. It can be manually altered by varying torch Z position, RF power, and auxiliary
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Inlet system Lenses
X ⇠3.72 X ⇠3.09
Y ⇠3.41 Y ⇠-2.28
Z ⇠0.9 Focus ⇠-588

RF Power 1400 Shape ⇠ 230
Aux. Gas 0.9 Source O↵set -38
Cool Gas 15.25 Focus Quad 4.5

Sample Gas ⇠1.16 Rotation Quad 0
Ammonia 0.0025 Dispersion Quad 0

Table 2.3: Example of operating parameters for the Thermo Neptune MC-ICPMS
used at NOCS for boron isotope analysis. Gas fluxes are in L/min. Note that these
values are intended as examples of typical settings; some operating conditions will vary
considerably between analytical sessions. Aux. gas, cool gas, ammonia gas flows, source

o↵set, rotation quad and dispersion quad, however, are seldom altered.

gas flow rates, but will typically fall within a range in sample gas of 1.14 - 1.22 L/min.

Typically this stability plateau is found at higher sample gas input (+⇠0.04 L/min, as

in Fig. 2.5 A) than peak sensitivity, and will result in a reduction in sensitivity of

⇠20-30%. The position of the sample gas stability plateau and peak shape are

monitored throughout a day’s operation to ensure any instrumental drift in this regard

is accounted for.

The importance of good tuning (both for sensitivity and stability/peak shape) is

demonstrated by Figs. 2.6 and 2.7 below. If tuning and plasma stability is satisfactory,

any in-run drift in instrumental mass fractionation is gradual, and measurements of

11B/10B ratios in NIST SRM 951 bracketing standards either side of a sample are

within uncertainty of each other (Fig. 2.6). In contrast, inadequate tuning and

sub-optimal machine performance will result in instability in mass fractionation,

manifested in large jumps in measured 11B/10B between bracketing standards (Fig.

2.7). In this case, correction for instrumental mass fractionation in intervening samples

becomes problematic, as it is not clear which (if either) of the two bracketing

standards displays an instrumental mass fractionation more representative of that

experienced by the intervening sample. In this way, instability will greatly decrease

analytical accuracy.
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Figure 2.5: Examples of typical intensity and isotope ratio profiles as sample gas is
increased. Shaded in red is an approximation of the ’stability plateau’ in each case,
with the red line marking the most appropriate sample gas level to select for analysis.
While Panel A represents the ‘classic’, most typical sample gas profile, very di↵erent
profiles (see Panels B and C) can still produce good data: in Panel B the broad peak
and overall stability (see absolute ranges on ratio axes) make this a suitably stable
sample gas zone, while in Panel C while the trough profile appears steep, again, in

absolute terms variation in the measured isotope ratio with sample gas is small.
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Figure 2.6: An example of ‘good’ machine behaviour/tuning. Note that while some
drift is evident, each measurement of NIST SRM 951 is within error of the preceding and
subsequent measurement, indicating that samples are well bracketed and reproducibility

will be good.
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Figure 2.7: An example of ‘poor’ machine behaviour/tuning. Measured isotope ratios
in bracketing standards commonly shift by more than the range of uncertainty of each
measurement. Sample-standard bracketing then becomes problematic, as it is not clear
which (if either) of the two bracketing standards displays a more similar instrumental
mass fractionation to that seen by the intervening sample. In this run, such fluctuations

occur 11 times (marked by pink arrows).

2.5 Sequence design

Besides careful tuning, the design of method files and analytical sequences is also key.

Each sample and standard measurement is made using the same analytical method,

consisting of 60 cycles of 2.097s-integrated measurements. Typical measurement block

order is described in Table 2.4. Every sample is bracketed by NIST SRM 951 boric

acid, meaning that instrumental mass fractionation can be corrected (a major

advantage of the MC-ICPMS technique; Foster, 2008). Wash time between
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samples/standards is 2 mins (to reduce washout to <2% of sample signal). The

reduction in boron memory e↵ect a↵orded by ammonia addition (section 2.4.1) is such

that small samples of ⇠ 5 ppb may still be bracketed with 50 ppb B 951 boric acid

without any resultant tail-in e↵ect on measured �11B (see also Section 2.6.2).

Blank pot 1
951-50ppb (+PC)
Sample 1
951-50ppb
Sample 2
951-50ppb
Sample 3
951-50ppb
Blank Pot 2

Table 2.4: Standard block order for an analytical sequences on the MC-ICPMS. Note
a peak centre (denoted PC) takes place during the measurement of the first 951 boric
acid in a block: if changes in plasma behaviour develop in-run, peaks might otherwise

drift, to the detriment of internal reproducibility.

Each block of three samples (and associated bracketing standards) is delimited by

measurements of ‘blank pots’. These are 1.5 ml autosampler vials (the same as those

in which samples are held for analysis) filled with a volume of 0.5 M HNO3 equal to

sample volumes, so as to permit accurate characterisation of fall-in blank,

reagent-borne blank, and any possible contamination from the autosampler vials

themselves. Any such blank (typically small; see Fig. 2.8) is corrected for by

subtracting the averaged measured 10B and 11B intensities from bracketing blank pots

from the 10B and 11B intensities of intervening samples and their bracketing standards.

Although bracketing standards are measure from a large 20 ml standard vial rather

than these 1.5 ml autosampler vials, and as such blank correction from blank pots may

be an over-estimate (see Fig. 2.8), the e↵ect of such an over-correction on

mass-bias-corrected sample �11B is very small (< 0.02 %).

At NOCS, as at the University of Bristol, standard protocol dictates that samples are

analysed twice, and the average of these two replicates reported as the measured value.

Note these replicate measurements are fully independent; that is to say that they do

not share bracketing standards or blanks. Samples and blank pots are measured once

over, then a block of 951 standards are run (to give an indication of machine behaviour
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Figure 2.8: Typical evolution of measured 11B in blank pots over the course of an
analytical run. As may be seen, fall in blank is minimal. That said, 11B measurements
in blank pots are higher than measurements of a larger 20 ml blank pot (marked with
asterisks), in which any fall-in blank is more diluted: demonstrating why measurements

of smaller blank pots are preferred.

mid-way through the run), before all samples and blank pots are measured for a

second time.

2.6 Characterising long-term reproducibility

2.6.1 What is reproducibility?

The accurate quantification of uncertainty in analytical science is vital, and this is

particularly crucial in the case of boron isotope analysis, where reconstructed CO2

estimates could shape policy decisions (e.g. IPCC AR4) and so must be reliable to

within characterised bounds of certainty. When we speak about uncertainty, it is

useful to di↵erentiate between internal, intermediate and external reproducibility.

Internal reproducibility, in this context, is the uncertainty in the boron isotope ratio

measurement made via mass spectrometry (in our case characterised by a standard

error of 60 individual measurements within an analytical cycle of 2 minutes). The size

of this uncertainty is generally dependent on sample (signal) size, quality of tuning and

machine/introduction system behaviour on any given day.

Intermediate reproducibility in this instance describes how repeatable a measurement

would be if you were to carry out the analysis again on a subsample of the same
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solution (for instance during another analytical session). Again, in this case sample

size, machine/introduction system behaviour and tuning are the main sources of

uncertainty, but variation in these factors between days is typically greater than within

one run or one measurement (i.e. internal reproducibility).

Finally, full external reproducibility is the variability of measured values of �11B if one

was to run the same sample multiple times through all cleaning protocols, column

chemistry and analysis. In addition to the factors that a↵ect internal and intermediate

reproducibility, external reproducibility will be influenced by factors such as cleaning

e�cacy, sample heterogeneity and column elution e�ciency.

2.6.2 Results: Long-term reproducibility at the NOC

Following Rae et al. (2011), the long-term external reproducibility of sample

measurements is characterised here by the repeat analysis of of carbonate reference

materials and in-house standards at a number of di↵erent analyte concentrations (5-50

ppb) throughout the duration of this PhD project. Carbonate reference materials used

at NOCS are Japanese Geological Survey JCP-1 Porites coral (Okai et al., 2002) and

JCT-1 Tridacna clam (Inoue et al., 2004). The principal factor determining the

reproducibility of these measurements is the size of the sample measured (or, more

specifically, the size of the 11B signal that is measured on the MC-ICPMS). This is

because counting statistics deteriorate (in other words, so-called ‘shot noise’ increases)

as signal intensity drops. Furthermore, as beam intensities drop below a threshold

(typically ⇠100 mV with 1011 amplifiers), Johnson noise begins to add further

analytical uncertainty (see Rae 2011, Chapter 3, and John and Adkins 2010).

Relationships between sample size (or 11B intensity) and external reproducibility in

carbonate reference materials can then be used to approximate the external

reproducibility of any given carbonate measurement (as in Rae et al., 2011). The form

of this size-reproducibility relationship is described in Equation 2.1 below, where x, y,

a, and b are constants. The double exponential form of this equation reflects the two

di↵ering regimes of uncertainty: the first (above ⇠ 100 mV 11B intensity) dominated

by shot noise, and the second (at signal intensities below this crossover) dominated by

Johnson noise.

2� = x⇥ expa[
11B] + y ⇥ expb[

11B] (2.1)
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Figure 2.9: Plot of external reproducibility of JCP-1 (Okai et al., 2002) and JCT-
1 (Inoue et al., 2004) standards as a function of 11B intensity (in volts with 1011

ohm resistors) measured by MC-ICPMS, following Rae et al. (2011). The lines-of-
best-fit plotted are double exponentials, described by Equations 2.2 and 2.3. External
reproducibility may then be approximated from observed 11B intensity, which for the

most part is dictated by sample size.

For data analysed prior to March 2013, equation 2.2 was used to characterise

reproducibility at NOCS.

2� = 1.87⇥ exp�20.6[11B] + 0.22⇥ exp�0.43[11B] (2.2)

Reproducibility of data analysed after this date is estimated via an updated

reproducilbility curve described by equation 2.3 below (R2= 0.85).

2� = 2.25⇥ exp�23.01[11B] + 0.28⇥ exp�0.64[11B] (2.3)

These reproducibility curves translate to typical reproducibilities of ±0.17-0.2 h for 20

ng of B (which, after column chemistry, produces a ⇠50 ppb B solution), ±0.22-0.25 h
for 10 ng, ± ⇠0.3 h for 5 ng B and ⇠0.7 h for 2 ng B.

As standard, all samples at the NOC are analysed twice during a machine run (see

Section 2.5), and the average of these two measurements taken as the measurement

value. However, occasional machine problems or nebuliser blockages may mean that

only one replicate measurement is run, or that one of the replicate measurements must

be discounted as unreliable. Given that the reproducibility equations above (Equations
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2.2 and 2.3) are calculated from averaged measurement pairs, it is not appropriate to

use these equations to approximate uncertainty in these cases; a degree of variability in

measurements is muted by averaging paired replicates. A reproducibility curve

calculated from the variability of single replicates, rather than pairs, is shown in Fig.

2.10, and is given in equation 2.4 below (R2= 0.97).

2� = 6.82⇥ exp�32.61[11B] + 0.28⇥ exp�0.18[11B] (2.4)
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Figure 2.10: External reproducibility of pairs of replicate measurements of JCP-1
(Okai et al., 2002) and JCT-1 (Inoue et al., 2004) standards (as a function of 11B
intensity) compared to the reproducibility of boric acid standards (paired replicate
measurements) and the reproducibility curve produced from single measurements. The
lines-of-best-fit plotted are double exponentials, described by Equations 2.2 (May 2012,
shown as a black dashed line), 2.3 (March 2013, shown as a solid black line) and 2.4

(March 2013, single measurements, shown in red).

These long-term reproducibility patterns in carbonate standards can be compared with

reproducibility of boric acid standards to provide an insight into whether carbonate

cleaning or boron separation protocols have any influence on reproducibility. In the

case of reproducibility at the NOC, there seems to be little consistent di↵erence (see

Figs. 2.10 and 2.11) between full (carbonate) reproducibility and the reproducibility of

in-house (BIG-E and BIG-D) and reference material standards (ERM AE120, AE121

and AE122, Vogl and Rosner, 2012), indicating no systematic cleaning or

purification-induced bias.

It is worth noting that while the variability of measurements does increase with

smaller samples (and 11B signal), we see no systematic bias towards lighter or heavier
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Figure 2.11: External reproducibility (2�) predicted from Equation 2.3 as compared
to observed 2� variability of pairs of replicate measurements of of boric acid in-house
standards (BIG-D and BIG-E) and reference materials (AE120, AE121, AE122; Vogl
and Rosner, 2012) within discrete ranges of 11B signal intensity. While the fit for BIG-
D and BIG-E is generally good, relatively poor fit in AE121 and AE122 boric acid
standards is a result of the small number of measurements of these reference materials

made to date (n < 50, split between 8 signal intensity bins).

values with decreasing sample size (as would occur, for example, with blank or

wash-out problems). In fact, absolute values in �11B are within analytical uncertainty

of each other over the entire range of signal intensities (see Figs. 2.12 and 2.15). This

is further evidence of the accuracy of �11B measurements at NOCS via this technique.

2.7 Comparability with other Laboratories

2.7.1 Absolute �11B

As discussed in section 1.4.1, one major hindrance in the development of the �11B-pH

proxy to date has been the poor reproducibility of �11B measurements between

laboratories. Although absolute accuracy in measurements of non-carbonates at NOCS

is evident from analyses of NIST SRM 951 standard and seawater (Table 2.2), no

analogous carbonate-matrix standards are available to verify carbonate cleaning

methods. Here the results of inter-laboratory comparisons between NOCS and the
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Figure 2.12: Measurements of JCT-1 produced at the NOC. The thick dashes line
denotes the long-term average of 16.11 h, with the thin dashed line either side denoting
the overall 2� of this value (0.21 h). Grey lines mark the reproducibility curve from
Equation 2.3. Error bars denote the 2� of pairs of replicates in each bin (except in the
case of the smallest sample, where it is a 2� of paired replicates), with the numbers
below each bin denoting the number of pairs of replicates analysed within this intensity

bin.

University of Bristol (which has been party to earlier, wider intercomparison studies;

Aggarwal et al., 2009, Foster et al., 2013) are presented. Given that the absolute

accuracy of MC-ICPMS �11B measurements made at the University of Bristol has been

further demonstrated via standard addition (Ni, 2010), demonstrable agreement

between measurements of foraminifera in these two laboratories would also imply

absolute accuracy in measurements from NOCS. To test this, downcore samples of G.

ruber from ODP Site 999A were re-picked and re-cleaned at NOCS as described in

section 2.3, and compared to published measurements from Foster (2008). In all cases,

measurements made at NOCS are within uncertainty of those made at the University

of Bristol (Fig. 2.13), demonstrating good agreement between both laboratories.

Furthermore, measurements of seawater and various in-house carbonate and boric acid

standards from both laboratories were found to be indistinguishable (Fig. 2.14). As

such it would appear that analyses at NOCS are accurate in absolute terms, and that

there is no inter-laboratory bias between NOCS and Bristol Isotope Group.

While NOCS has yet to be involved in any published, large-scale intercomparison

studies (such as Gonfiantini et al., 2003, Aggarwal et al., 2009, Foster et al., 2013),

absolute values reported here for carbonate reference material JCP-1 are similar to

those reported elsewhere (Wang et al., 2010, Douville et al., 2010, Ishikawa and
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Figure 2.13: Boron isotope measurements from ODP999A from Foster (2008) cleaned
using NaOCl (white squares), compared to samples repicked and cleaned as described
in section 2.3 and measured at NOCS (red squares). The oxygen isotope data from the

site are plotted for context.
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Figure 2.14: Comparability of measurements of a range of in house standards between
the Thermo Neptune MC-ICPMS machines at the Bristol Isotope Group and the Na-
tional Oceanography Centre, Southampton. Error margins are the quadratic addition
of 2 standard deviations on the mean measurements at Bristol and at Southampton.
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Figure 2.15: Measurements of JCP-1 produced at the NOC, plotted for comparison
with other published values (Wang et al., 2010, Douville et al., 2010, Ishikawa and
Nagaishi, 2011). The thick dashes line denotes the long-term average of 24.31 h, with
the thin dashed line either side denoting the overall 2� of this value (0.26 h). Grey
lines mark the reproducibility curve from Equation 2.3. Error bars denote the 2� of
pairs of replicates in each bin, with the numbers below each bin denoting the number

of replicates analysed in this intensity bin.

Nagaishi, 2011, see Figs. 2.15 below), and to preliminary data measured via

MC-ICPMS at the University of South Carolina (B. J. Marshall, pers. comm.). In

addition, work has begun on a new intercomparison project involving NOCS,

co-ordinated by Drs. Ed Hathorne and Marcus Gutjahr (GEOMAR, Kiel), Asst. Prof.

Bärbel Hönisch (Lamont-Doherty Earth Observatory) and Dr. Gavin Foster (NOCS).

2.7.2 Reproducibility

Unsurprisingly, given the almost identical procedures and equipment used, the curve of

external reproducibility vs. sample signal produced at NOCS is reassuringly similar to

that observed at Bristol Isotope Group, University of Bristol, as reported by Rae et al.

(2011) and defined by Equation 2.5 below. While it would appear that our

reproducibility in smaller samples is somewhat poorer than at BIG, it is likely that

this has more to do with the small number of measurements of JCP-1 and JCT-1 at

low [B] made to date at the NOC than any systematic issues.

2� = 1.7⇥ exp�29[11B] + 0.31⇥ exp�0.75[11B] (2.5)
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Figure 2.16: External reproducibility of pairs of replicate measurements of JCP-1
(Okai et al., 2002) and JCT-1 (Inoue et al., 2004) standards (as a function of 11B
intensity) at the NOC compared to reproducibility of at Bristol Isotope Group (from
Rae et al., 2011). The lines-of-best-fit plotted are double exponentials, described by

Equations 2.2 (May 2012), 2.3 (March 2013) and 2.5 (Bristol).

2.8 Summary

As may be seen from this Chapter, analysis of boron isotopes in foraminiferal

carbonates is not a trivial matter. Possible sources of inaccuracy are numerous, and

strict protocols must be observed for the generation of data of acceptable quality. That

said, as a result of these protocols and practices, it is clear that accurate and precise

measurements of �11B can be routinely achieved at NOCS via MC-ICPMS.

Consequently, questions of palaeoceanography and foraminiferal biology (e.g. Chapters

3 and 4) can be approached with confidence.



Chapter 3

Calibration of the boron isotope

proxy in the planktic foraminifera

Globigerinoides ruber for use in

palaeo-CO2 reconstruction

Abstract

The boron isotope-pH proxy, applied to mixed-layer planktic foraminifera, has great

potential for estimating past CO2 levels, which in turn is crucial to advance our

understanding of how this greenhouse gas influences Earth’s climate. Previous culture

experiments have shown that, although the boron isotopic compositions of various

planktic foraminifera are pH dependent, they do not agree with the aqueous

geochemical basis of the proxy. Here, results are outlined from culture experiments on

Globigerinoides ruber (white) across a range of pH (⇠7.5-8.2) and analysed via

multicollector inductively-coupled plasma mass spectrometry (MC-ICPMS). These

data are compared to core-top and sediment-trap samples to derive a robust new

species-specific boron isotope-pH calibration. Consistent with earlier culture studies,

G. ruber demonstrates a reduced pH-dependency compared to borate ion in seawater.

Evidence for a size fraction e↵ect in the �11B of G. ruber is also presented. Finally,

atmospheric CO2 concentrations over the last deglacial are reconstructed by applying

70
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this new calibration at two equatorial sites, ODP Site 999A and Site GeoB1523-1.

These data provide further grounding for the application of the boron isotope-pH

proxy in reconstructions of past atmospheric CO2 levels.
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3.1 Introduction

3.1.1 The Boron isotope-pH proxy in planktonic foraminifera

The use of boron isotopes in surface-dwelling planktic foraminifera to reconstruct

ocean pH, and hence past levels of atmospheric CO2, o↵ers great promise (e.g. Foster,

2008, Hönisch and Hemming, 2005b, Hönisch et al., 2009, Palmer et al., 2010, Pearson

and Palmer, 2000, Pearson et al., 2009, Seki et al., 2010, Foster et al., 2012). The

boron isotope-pH proxy has a well-understood foundation in inorganic chemistry that,

providing biological interferences are understood, should permit greater confidence in

boron-based palaeo-pH and -pCO2 estimates. For a summary of this basis, the reader

is referred to Chapter 1. However, because of the range of o↵sets from the boron

isotope composition of ambient borate ion that has been reported to date in planktonic

foraminifera (Sanyal et al., 1996, 2001, Hönisch et al., 2003, Hönisch and Hemming,

2004, Foster, 2008), application of the proxy beyond those extant species with

species-specific calibrations requires further assumptions to be made. Clearly, then, it

is important to extend the range of planktonic foraminiferal species for which empirical

calibrations exist, and in doing so better understand exactly how these observed o↵sets

from borate ion, known collectively as “vital e↵ects”, arise.

3.1.2 Existing calibrations

Culture studies are an important tool in calibrating foraminifera-based proxies,

allowing for manipulation of growth conditions beyond the range seen in the modern

oceans (for example the concentration of boron, Allen et al., 2011). In the case of the
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boron isotope-pH proxy, attempts have been made to calibrate the symbiont-bearing

foraminifera Orbulina universa (Sanyal et al., 1996) and Globigerinoides sacculifer

(Sanyal et al., 2001) across a range of pH (7.6 to 9). These culture studies confirmed

that the �11B of planktic foraminiferal calcite is strongly dependent on pH, but also

describe a weaker sensitivity to pH in foraminiferal �11BCaCO3compared to �11BB(OH)�4

(see Fig.3.1). However, while undoubtedly pioneering, these studies are not without

scope for uncertainty. For instance, some carbonate system parameters during culture

in these studies are relatively poorly constrained (e.g. pH only determined using

NBS-bu↵er-calibrated electrodes) and some experiments (Sanyal et al., 2001) were

performed at 10 x natural boron concentration, introducing further uncertainty by

increasing the bu↵ering capacity of culture seawater and thus potentially dampening

vital e↵ects (Zeebe et al., 2003). Furthermore, limited calibration attempts by Foster

(2008) suggested a stronger pH sensitivity in the �11B of G. ruber, leading the author

to suggest these previous calibrations may have been compromised by having used

NTIMS without prior matrix removal, a technique which can result in non-systematic

analytical inconsistencies (Rae et al., 2011, Foster et al., 2013, and references within).

Therefore, further culture calibrations are required, both to corroborate previously

reported pH sensitivities and to extend the applicability of the boron isotope-pH proxy

to more species of foraminifera.

3.1.3 Globigerinoides ruber : Evolutionary History, Morphotypes,

Range and Habitat

Globigerinoides ruber is a symbiont-bearing planktic foraminifera that is ubiquitous in

tropical and equatorial waters. The species is a good candidate for use in

palaeo-reconstruction, due to its shallow depth habit (< 25 m, Hemleben et al., 1989)

and lack of any significant layer of gametogenic calcite (Caron et al., 1990), which

reduces the problems of partial dissolution (Ni et al., 2007). It also has a relatively

long evolutionary history, having first diverged in the early Miocene approximately 18

Ma (Aurahs et al., 2011). Perhaps because of this it has been used widely in the

reconstruction of palaeotemperature (e.g. Oppo et al., 2009) and even palaeo-CO2 (e.g.

Foster, 2008).
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However, the morphospecies G. ruber is in fact includes a number of other groupings,

which, depending on one’s taxonomic bent, might be defined as species, subspecies,

morphospecies or cryptospecies, and that have been subject to some considerable

revision since the first description of the morphospecies (then called Globigerina rubra)

by d’Orbigny (1839). Although initially the species G. ruber was strictly defined, with

morphological variants designated as di↵erent species (e.g. Globigerinoides elongatus;

originally Globigerina elongata d’Orbigny, 1826), these species were reassigned as

phenotypic variants of the broader species G. ruber by Parker (1962). Only in the

advent of isotopic (e.g., Wang, 2000, Steinke et al., 2005) and genetic analyses (e.g.

Darling and Wade, 2008, Aurahs et al., 2009) are these earlier species divisions

appearing increasingly prescient. The morphotype or chromotype G. ruber (pink) is

perhaps the most easily discerned variant, distinguished by its salmon to rose-pink

colouration. It is today found only in the equatorial Atlantic and Caribbean, having

disappeared in the Indo-Pacific Ocean ca. 120 ka (Thompson et al., 1979). Since it has

been shown that this species is geochemically distinct (e.g. Anand et al., 2003), and

given that it is easily distinguished from the white morphotype, it is commonly

separated in palaeoreconstructions (e.g. Rühlemann et al., 1999, Vink et al., 2001).

Within the white chromotype, distinctions between morphotypes becomes somewhat

more subtle. Wang (2000) defines two geochemically distinct white morphotypes, sensu

stricto and sensu lato, which have since been corroborated by others (Lin et al., 2004,

Kawahata, 2005, Löwemark et al., 2005, Steinke et al., 2005, Numberger et al., 2009).

Indeed, more recent phylogenetic analyses (Aurahs et al., 2011) suggest that the sensu

lato subgroup is in fact more closely related to G. conglobatus than G. ruber sensu

stricto. In addition, the sensu lato grouping of Wang (2000) can be further subdivided

(Numberger et al., 2009) into G. pyramidalis (van den Broeck, 1876) and G. elongatus

(d’Orbigny, 1826), although, in practice, sample size constraints mean that the

separation of these morphotypes for boron isotope analysis is seldom feasible. As such

in this study we apply the more general classification system of Wang (2000),

combining both sensu lato morphotypes, though we suggest that further testing as to

the possibility of geochemical di↵erences between G. ruber pyramidalis and G. ruber

elongatus would certainly be beneficial.
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Figure 3.1: Published bulk planktic foraminiferal culture and inorganic precipitate
experiments, plotted in �11B-pH space (top panel) and in �11BCaCO3 -�

11BB(OH)�4
space

(bottom panel). Note that for the purposes of graphical representation, the data were
normalised to a �11Bsw= 39.61 h (both panels), and to a temperature of 26 �C and
a salinity of 37.2 psu (top panel only; the conditions of our culture calibration). The
black line in �11B-pH space is the inorganic value of �11BB(OH)�4

at these environmental

conditions, with the dotted lines representing the error value on the value of 11�10KB

(± 0.0006) in seawater at 25 �C reported by Klochko et al. (2006). Coloured calibra-
tion lines are best fits, varying 11�10KB and a from Equation 3.4. The black line in
�11BCaCO3 -�

11BB(OH)�4
space (bottom panel) is a 1:1 relationship, i.e. a pH sensitivity

equal to that of borate ion. Calibrations are represented by York regressions calculated
using Isoplot (Ludwig, 2003), with shaded areas representing 95 % confidence intervals
for these regressions. Note that it was not possible to calculate statistically significant
95 % confidence intervals for the data of Rae et al. (2011) or Foster (2008) using this
method, as the spread in �11BB(OH)�4

is insu�cient, but they are included for compar-
ison, having been used elsewhere for downcore reconstruction. Regressions shown here

are described in Table 3.1.
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3.2 Calibration: Methods

3.2.1 Culture

3.2.1.1 Sampling and Culturing methods

Neanic (typically ⇠ 250 µm) specimens of G. ruber (white) were towed from depths of

< 10 m in the Gulf of Aqaba between January and March 2010, at the Interuniversity

Institute of Eilat, Israel. Individual foraminifera were transferred to seawater collected

at the site of plankton towing within 4-6 hours of capture, and kept under saturated

light conditions at ⇠ 23 �C until fully recovered (i.e. floating, with a halo of spines and

symbionts). Those that did not recover fully were retained for boron isotope analysis

as control tow samples, and used for mass-balance corrections (as discussed later).

Since traits used to distinguish the morphotypes of G. ruber (sensu stricto/lato; Wang,

2000) are often poorly developed in immature specimens (Aurahs et al., 2011), no

distinction could be drawn between morphotypes in culture. For reference, G. ruber

sensu lato made up 35-45% of the total identifiable population of G. ruber from tows

and core-top sediment in the Gulf of Aqaba. However, we see no di↵erence in �11B (or

B/Ca) between these morphotypes in core top sediments (see Fig. 3.2).

Recovered foraminifera were transferred to sealed Erlenmeyer flasks filled with

prepared seawater (see Section 3.2.1.2). Foraminifera were removed daily,fed one

newly-hatched Artemia nauplius, observed and measured using a Zeiss inverted light

microscope. Condition and approximate symbiont density was noted. In an attempt to

avoid damage to the foram and increase the low acceptance rates typically seen in

cultured G. ruber (Spindler et al., 1984), thereby increasing mass gain, Artemia were

incapacitated prior to feeding. Illumination was provided by a metal halide lamp (420

W, OsramTM) at levels of 200 µmol photons m�2 s�1 (13h light:11h dark), equivalent

to irradiance at 15 - 20 m depth in the open waters of the northern Gulf of Aqaba

(Shaked and Genin, 2006), and in keeping with the reported depth habitat of < 25 m

for G. ruber (Hemleben et al., 1989). Culture flasks were kept in water baths at a

constant temperature of 26 ± 0.5 �C (see Fig. 3.3).

After gametogenesis (typically after 6-10 days in culture), empty G. ruber tests were

removed from culture flasks, rinsed in de-ionised water, dried and weighed.
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Figure 3.2: G. ruber sensu stricto vs. G. ruber sensu lato (G. ruber elongatus and
pyramidalis) from the same core-top sediment samples, showing no consistent o↵set.
Error bars are calculated according to the characterised long-term reproducibility at

the NOC, Equation 2.2.

3.2.1.2 Carbonate System Control

Seawater was prepared in large batches to ensure consistency across all flasks, and a

surplus for topping-up was stored in airtight bottles in the dark at ⇠ 4 �C. Salinity

was reduced from ⇠40.7 to 37 via addition of de-ionised water. Following other

culturing studies (Sanyal et al., 1996), pH was altered by adjusting alkalinity via

addition of NaOH or HCl. Culture experiments were carried out at pH 8.174 ± 0.007,

7.894 ± 0.013, and 7.554 ± 0.013 (total scale; 2 se, n = 48 - 67). pH drift in the

culture flasks was monitored periodically using a pH electrode calibrated to NBS

bu↵ers, with individuals (n = ⇠ 3-5) from flasks that experienced large pH drift

discounted. Samples of culture solution were taken at the beginning of each pH

experiment, and a composite sample taken from all flasks at the end of culturing.

These water samples were poisoned with 50 µl saturated HgCl2 solution and

transported for full carbonate system analysis at the UK Ocean Acidification Research

Programme (UKOARP) Carbonate Chemistry Facility, at the National Oceanography

Centre Southampton (NOCS). Nutrient analyses were also undertaken to ascertain

nitrate, nitrite, phosphate and silicate concentrations. NBS-scale pH measurements of
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Figure 3.3: Culture apparatus, with recovery bath set to 23 �C on the far right and
culture baths at 26 �C towards the foreground. Note that subsequent to this photo
being taken a third light source was obtained and set up. While the recovery bath was
subject to 24 hr light conditions, culture baths were set to 13h light:11h dark cycles.
As such a screen was set up to prevent light from the recovery bath reaching culture

samples.

these composite samples taken in Eilat were consistently higher than Dissolved

Inorganic Carbon(DIC)/Total Alkalinity (TAlk)-derived total scale pH measurements

by 0.21 pH units (see Fig.3.4). As such, we judged our in-culture NBS-calibrated

potentiometric electrode measurements to be reliable once corrected for this 0.21 pH

o↵set. While the discrepancy between scales reported here is somewhat larger than a

‘universal’ 0.14 o↵set that is sometimes advocated elsewhere (Hönisch and Hemming,

2005a), we highlight that conversion between scales is not universal, and may be

a↵ected by factors such as instrumental di↵erences (Wedborg et al., 1999) or ionic

strength of the solution (Zeebe and Wolf-Gladrow, 2001) - which is particularly high in

the Gulf of Aqaba. As we show here (Fig 3.5), the correction used in the conversion of

NBS-scale measurements to total scale may have a large bearing on the conclusions to

be drawn, and as such we advise that if electrodes are used in culture studies such as
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Figure 3.4: Illustration of the good fit between pH measurements on the total scale
calculated from DIC/Alk using the constants of Lueker et al. 2000 and Dickson 1990
and NBS-bu↵er-calibrated electrode measurements once a correction of -0.21 has been
applied to the latter. On the basis of this, we derived our culture pH uncertainty from
NBS electrode measurements taken regularly during culture, corrected to approximate

the total scale.

these their o↵sets from total scale are properly calibrated. Although some authors

have suggested a universal correction of - 0.14 pH, neither this study nor Venn et al.

(2013) agree with this.

The advantage of using these electrode measurements over a more generalised ‘before

and after’ measurement (of stock solution and composite post-culture solution) is that

the pH range experienced by each foram could better quantified using the more high

resolution electrode measurements. For example, were we to have replaced the foram

in one flask with another half way through the experiment (after it had completed
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gametogenesis, for example), but ultimately not included the second foram for analysis

(because it died without completing gametogenesis, for example), we can quantify the

pH range experienced by the relevant foram and discount any pH variation after this

point (that would otherwise be unduly included in our pH estimates via a DIC/Alk

measurement of a post-culture composite).

3.2.1.3 Mass-Balance Calculations

To correct for the chemistry of the test grown outside of culture, a mass-balance

correction was used, following Erez (1983), Lohmann (1995) and Kisakürek et al.

(2008). Dried control samples (i.e. G. ruber tests towed at the same time as cultured

material) were weighed individually on a microbalance, photographed and measured

using Macnification imaging software. A size-mass relationship for all towed control

samples was calculated, such that initial size measurements (maximum axis multiplied

by its perpendicular axis) of foraminifera made immediately prior to culturing could be

used to estimate shell mass (Fig. 3.6). While organic matter was not removed prior to

weighing, calculation of CaCO3 mass via ICPMS for a subset of samples gave

consistent results, suggesting organics do not contribute much to dried shell mass. Best

fit was via power-type regression, as noted by Kisakürek et al. (2011) for G. ruber from

Eilat. The relationship is best defined by the equation

mass = 803.65 ⇤ (product of axes)1.957 (3.1)

where product of axes is expressed in mm2 (n= 112, R2 = 0.75, p < 0.001).

Reassuringly, the exponential of this relationship is the same as that defined by

Kisakürek et al. (2011).

The boron isotope composition and boron content (as B/Ca) of control G. ruber from

each experimental tow (n = 150-200) was then measured (see Section 2 for analytical

methodology). Assuming cultured individuals began with this �11B and B/Ca, and

using the size-mass relationship to estimate the mass of calcite grown out of culture, a

correction can be made and the composition of the foraminifera grown during culture

calculated by

�11B
culture

=
�11B

measured

� (�11B
controls

⇤ PB

controls

)

PB

culture

(3.2)
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Figure 3.5: Illustration of the importance of a good understanding of the correction
from NBS-bu↵er calibrated electrode measurements to the total scale. Note that if
using a correction of -0.21 (as required for our calibration), the slopes of the existing
calibrations would be within uncertainty of the �11B of aqueous borate, while without
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these calibrations to date (e.g. Hemming and Hönisch, 2007, Hönisch et al., 2007)
has revolved around the slope of these lines (i.e. the pH sensitivities observed), it is
perhaps surprising that this potential source of uncertainty has not been examined more

thoroughly.
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Figure 3.6: Size:Mass Relationship constructed from towed samples collected between
January and March 2010. Masses were determined by weighing individually, while size
is defined as the product of the maximum axis (when viewed from the umbilical side)
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(2011).
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where �11B
measured

is the measured boron isotopic composition of the bulk material,

and �11B
controls

is the measured boron isotopic composition of control foraminifera

towed at the same time as those cultured. PB
controls

and PB
culture

are the proportions of

boron in the bulk material coming from the pre-culture and culture-grown calcite

respectively. These are calculated based on the B/Ca ratios in the bulk material and in

control specimens, and the proportion of calcite mass grown in culture and out of

culture, such that

PB
culture

=
B/Ca

measured

� (B/Ca
controls

⇤ Pmass

controls

)

B/Ca
measured

(3.3)

and PB
controls

= 1� PB
culture

.

Uncertainty on each mass-balance-corrected culture datapoint was estimated from the

2� of 10,000 Monte Carlo simulations that incorporated the uncertainty in the

size-mass calibration (see Fig. 3.6, Panel B) and uncertainty in B/Ca measurements (5

%) and �11B measurements (from Equation 2.5) in ’control’ towed specimens and

cultured specimens.

3.2.2 Core-tops

3.2.2.1 Sampling

In order to compare the results of our culture calibration with foraminifera grown in

natural conditions, we measured specimens of G. ruber from globally distributed

core-top sites from the core archives at Tübingen, Germany and NIWA, New Zealand,

and from sediment trap material from the Cariaco Basin. Samples from NIWA were

verified as recent by way of 14C-dating (H. Bostock, pers. comm.), while from the

Tübingen repository only undisturbed multicore sediment containing Rose

Bengal-stained living benthic foraminifera was selected. In addition, material from

sediment traps in the Cariaco Basin was used to further test for biases introduced

during sedimentation. This array of sites covers as broad a range of in situ �11BB(OH)�4

as possible, and serves to test for any regional di↵erences (as seen in Mg/Ca, Bolton

et al., 2011) that might stem from genotype di↵erences, etc. (Darling and Wade,

2008). The locations of these core-top and sediment trap sites are shown in Fig. 3.7
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Figure 3.7: Locations of core-top, tow and sediment trap samples used in this study.
Filled circles are sites from which recent samples are measured (this study), while white
circles are core-tops from Foster (2008). Sites of downcore pCO2 reconstructions are
marked by a grey square (GeoB1523-1) and white circle (ODP 999A: also the site of

core-top measurement Foster 2008).

(see also Supplementary Table B.2). Samples were also taken from a number of size

fractions to examine any influence of test size on measured �11B, as discussed by

Hönisch and Hemming (2004) and Ni et al. (2007).

3.2.2.2 Carbonate System Characterisation

pH, temperature and salinity at the sediment trap site (CAR22(Z), collected January

2007) is interpolated from data from December 2006 and February 2007, downloadable

from www.imars.usf.edu/CAR. pH was estimated for core-top sites using surface water

oceanographic data from the GLODAP (Key et al., 2004), CARINA (Key et al., 2010)

and Takahashi et al. (2009) compendia (see Supplementary Table B.2). First, regional

salinity-TAlk correlations were calculated from surface (< 20 m) GLODAP/CARINA

measurements. Applying these correlations, monthly-resolved estimates of sea surface

salinity from Takahashi et al. (2009) were converted to monthly TAlk estimates.

Monthly temperature estimates were also taken from Takahashi et al. (2009).

Pre-industrial pCO2 at each core-top site was estimated by applying monthly

ocean-atmosphere �pCO2 from Takahashi et al. (2009) sites (corrected for the

anthropogenic changes in flux using the average industrial:pre-industrial �pCO2 ratio

found in the models of Gloor et al. 2003) to a pre-industrial atmospheric pCO2 value.

Where samples were 14C-dated, the age-appropriate atmospheric pCO2 2value was

http://www.imars.usf.edu/CAR
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taken from Lüthi et al. (2008) and references within. Where core-tops were not dated,

we assume an average late Holocene (< 4 kyr BP) value of 275 ppm. Combined with

approximations of typical local silicate and phosphate concentrations (from

GLODAP/CARINA measurements), monthly estimates of pH were calculated using

CO2sys.m (van Heuven et al., 2011), and the constants of Lueker et al. (2000), Lee

et al. (2010) and Dickson (1990). Note that we did not weight the annual mean

carbonate system parameters to any particular bloom season, given that G. ruber has

a fairly even intraannual flux (Kucera, 2007, Fraile et al., 2009). As such, pH (and thus

�11BB(OH)�4
) values given are the mean of twelve monthly estimates.

3.2.3 Presentation of Culture Data

3.2.3.1 �11B vs. pH plots

The most common way to present boron isotope data from cultured foraminifera is in

terms of the observed �11B-pH relationship (Fig. 3.1a). This, however, leads to

di�culties in comparing calibrations cultured under di↵ering temperatures and

salinities, where the value of pK⇤
B di↵ers, thereby introducing the need for

normalisation. For example, in Figure 3.1a, disparate calibration datasets are

normalised to our culture conditions (26 �C and 37.2 psu), based on the change in

inorganic �11BB(OH)�4
expected if pK⇤

B were altered to reflect given temperature,

salinity and pressure. Similarly, application of these calibrations to open ocean

foraminiferal data must include some correction for pK⇤
B di↵erences between datasets

(though this is often overlooked, e.g. Hönisch and Hemming 2005b).

Furthermore, in order to present boron isotope data in terms of the observed �11B-pH

relationship, it is necessary to characterise species �11B-pH relationships by forcing

them to fit the general equation for boron isotope-pH calculation (Eq. 1.10). This can

be done by incorporation of a constant o↵set or vital e↵ect termed ‘a’ into equation

(1.10), such that

pH = pK⇤
B � log

✓
� �11Bsw � (�11BCaCO3 � a)

�11Bsw �11�10 KB ⇤ (�11BCaCO3 � a)� 1000 ⇤ (11�10KB � 1)

◆

(3.4)
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In addition, the fit of empirical data to an equation of this form can also be optimised

by altering the 11�10KB constant (Table 1, Hönisch et al., 2007). The addition of an

o↵set ‘a’ to an aqueous �11BB(OH)�4
-pH curve (e.g. Hönisch and Hemming, 2005b,

Foster, 2008), however, implies that any such vital e↵ect is constant across a range of

pH. Past modelling e↵orts (Zeebe et al., 2003) provide some support for this argument,

but it must be noted that no previous culture calibration, our own included, shows a

constant o↵set from the 11�10KB of Klochko et al. (2006). Furthermore, any

optimisation of 11�10KB in tandem with an o↵set ‘a’, as used by Hönisch et al. (2007)

to characterise �11BCaCO3-pH curves of published empirical data, might be

misconstrued as implying 11�10KB 6= 1.0272, rather than that these empirical

calibrations exhibit pH sensitivities 6= the pH sensitivity of �11BB(OH)�4
.

3.2.3.2 �11BCaCO3vs. �11BB(OH)�4
plots

Given these di�culties, we instead describe culture calibration data following Foster

et al. (2012). Similar to Rollion-Bard and Erez (2010), who plot calculated pH vs.

culture pH, this approach involves a linear regression between calculated �11BB(OH)�4

(at in situ conditions) and measured �11BCaCO3 (Fig. 3.1b). Thus, given measured

�11BCaCO3 , one can use the appropriate calibration regression to predict the value of

ambient �11BB(OH)�4
, which may then simply be entered into the general equation (Eq.

1.10) to calculate pH. Necessary transformations for relevant existing calibrations are

listed in Table 3.1. On such cross-plots, calibration data define straight lines with

slopes (given as ‘m, Table 3.1) reflecting the di↵erence between the �11B-pH sensitivity

of �11BB(OH)�4
and �11BCaCO3 . The slopes and intercepts (given as ‘c’, 3.1) of these

lines are independent of pK⇤
B (and hence salinity, temperature and pressure), meaning

that culture and core top calibrations can be readily compared without reference to

particular environmental conditions. In addition, presentation of culture calibrations in

this way allows for the plotting of 95% confidence intervals using York regression,

taking into account both uncertainty on culture conditions and measurement

uncertainty (York, 1968, Ludwig, 2003). This approach permits better propagation of

the uncertainty of culture calibrations into final pH and pCO2 reconstructions, and

confirms the observations of Hönisch et al. (2007) that pH sensitivities seen in

published foraminiferal culture calibrations (Sanyal et al., 1996, 2001) are within

statistical uncertainty of the pH sensitivity of inorganic CaCO3 (as derived by Sanyal
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Coe�cients of Calibration
Publication Carbonate �11BB(OH)�4

=(�11BCaCO3-c)/m MSWD p

c 2� m 2�
Sanyal et al.
(1996)abc

Orbulina

universa

5.0 5.3 0.82 0.32 5.6 <0.01

Sanyal et al.
(2000)a

Inorganic
precipitates

7.1 3 0.75 0.15 0.12 0.73

Sanyal et al.
(2001) ab

Globigerinoides

sacculifer

6.7 3.3 0.85 0.19 1.05 0.31

Henehan et al.
(this study)

Globigerinoides

ruber

9.52 1.51 0.60 0.08 0.01 0.96

Table 3.1: York-fit regression statistics from Isoplot (Ludwig, 2003); MSWD = Mean
Square Weighted Deviation, p = probability of fit at 95 % confidence. a pH measure-
ments (from which �11BB(OH)�4

is derived) come from NBS-bu↵er-calibrated electrode

measurements, and as such are in NBS-scale. b Salinity assumed to be 35 psu c ‘Room
temperature’ assumed to be 20 �C

et al., 2000). Given also the possibility that species-specific o↵sets (i.e. the observed

range in intercepts in Table 3.1) may be at least partially due to inconsistencies in

absolute N-TIMS measurements between labs (as highlighted by Hönisch et al. 2003,

Rae et al. 2011, Ni 2010), further investigation into the species-specificity of these

calibrations is required.

3.2.4 Analytical methods

Analytical methods are as discussed in Chapter 2. Culture, sediment trap and tow

samples, in agreement with other culturing studies (e.g. Russell et al., 2004), were

subject to intensified oxidative cleaning (3 x 20-30 min treatments of 250 µl 1% H2O2

+ 0.1 M NH4OH4 at 80 �C) to account for the larger organic. In core-tops, oxidative

cleaning was shorter (3 x 5 min) to minimise sample loss. Culture and control tow

samples were run at the University of Bristol, and as such uncertainty is calculated

from the intensity of 11B signal in volts as per (Rae et al., 2011, see Equation 2.5).

Uncertainty on core-top and sediment trap data is similarly calculated, but according

to the external reproducibility of repeat analyses of Japanese Geological Survey

Porites coral standard (JCP; �11B= 24.31h) at the University of Southampton, as

described by Equation 2.2 (see also Fig. 2.9).
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3.2.5 Downcore application

3.2.5.1 Site and species selection

G. ruber white (300-355 µm) were picked at roughly even intervals from sediments aged

0 to 30 kyr from core site GeoB1523-1, recovered from the Ceara Rise in the western

equatorial Atlantic (3.83 �N, -41.62 �E) at a water depth of 3292 m. The age model for

GeoB1523-1 was based on �18O(Gingele et al., 2000), while the published data from

Foster (2008) at ODP 999A use high resolution 14C-based ages (Schmidt et al., 2004).

3.2.5.2 Temperature and salinity estimates

Estimates of sea surface temperature (SST) and salinity (SSS) are required to calculate

pH from �11B, as these parameters influence pK⇤
B. It is important to note, however,

that calculated pH is only weakly dependent on these environmental parameters (0.012

pH units per �C; 0.003 pH units per psu). For GeoB1523-1, SST was reconstructed

using the Mg/Ca ratio of G. ruber measured on an aliquot of the same sample used for

isotope measurement and the generic SST calibration (Mg/Ca = 0.38 * e[SST⇤0.09]) of

Anand et al. (2003). This is preferred over the species-specific calibration as it better

fits our dataset of >20 core-top measurements (Henehan, unpublished data). As with

Hönisch and Hemming (2005b), palaeo-salinity was estimated using the equation

SSS = SSS
modern

+

✓
�sea�level

3800
⇤ 34.8

◆
(3.5)

where �
sea-level

is an estimate of sea-level change in metres, 3800 m is the mean

modern ocean depth, 34.8 is mean averaged modern ocean salinity, and SSS
modern

is

the modern salinity at the site of interest (from GLODAP, Key et al., 2004).

3.2.5.3 The second carbonate system parameter

Ocean pH is only one variable of the ocean carbonate system, and to determine

[CO2]aq and hence pCO2 using Henry’s Law, another variable is required (Zeebe and

Wolf-Gladrow, 2001). The second variable chosen, TAlk, is calculated from estimated

palaeo-salinity (following Palmer and Pearson, 2003, Hönisch et al., 2009), itself
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derived from equation 3.5 above, and a TAlk vs. SSS relationship defined by modern

ocean data from the equatorial Atlantic (TAlk = SSS*61.88 + 162.66, R2= 0.88, p <

0.001; from GLODAP, Key et al. 2004).

It is important to note, however, that the generated pCO2 estimate is determined

largely by the reconstructed pH, and TAlk has little control. For example, given a pH

of 8.2 (and SST of 25 �C and salinity 35 psu), a drastic increase in TAlk from 2400 to

2600 µmol/kg - equivalent to the range modelled by Hönisch et al. (2009) for the last 2

myr - only increases reconstructed pCO2 by 24 ppm.

Given this reconstruction of TAlk and a �11B-derived pH, it is possible to reconstruct

the entire carbonate system using CO2sys.m (van Heuven et al., 2011). Given the

modern disequilibrium of surface waters above GeoB1523-1 (�pCO2 of 15 to 25 ppm;

Takahashi et al. 2009), and a correction factor for the pre-industrial �pCO2 in this

region of 1.33 (derived from Gloor et al. 2003), a correction for disequilibrium of -27

ppm is applied in order to calculate atmospheric CO2 concentrations from calculated

aqueous pCO2. We apply an estimate of uncertainty on reconstructed pCO2 of ± 29

ppm. This is a quadratic addition of the ranges of uncertainty in reconstructed pCO2

that are produced via propagation of each input parameter uncertainty in turn,

namely the calibration equation (uncertainty as in Table 3.1 and discussion below),

�11B measurement (⇠ ±0.2h), and reconstructed salinity (± 1 psu), TAlk (± 100

µmol/kg) and temperature (± 1 �C).

3.3 Calibration: Results

3.3.1 Culture

Results of culturing work are given in Table 3.2. Mortality was greatest at our lowest

pH, with most individuals surviving to gametogenesis in the two higher pH

experiments (54 % and 64 % at 8.174 and 7.894 pH respectively), but only 40 %

surviving to gametogenesis at pH 7.554 (compared to pH in the Gulf of Aqaba of ⇠

8.075). Note that while these values of survivorship are low compared to cultures of

other species (e.g. G. sacculifer ; Hemleben et al., 1987), these authors note G. ruber is

notoriously di�cult to culture, and as such the observed high mortality is not
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unexpected. Samples grown at low pH (7.554) were typically surrounded by a much

denser shroud of symbionts, with the test outline often entirely obscured by a dense

mat of symbionts (Fig. 3.8b). Also, at this low pH individuals often lost most, or all,

of their calcitic spines and fed less frequently (every 3-4 days) using unsupported

pseudopods only. Larger tests across all pH treatments often showed a proliferation of

many small and/or kummerform chambers growing in unusual configurations. While

very unusual within the size range 300 - 355 µm, it is not uncommon to see such

growth patterns in larger specimens of G. ruber (> 400 µm) from Red Sea core-tops,

indicating these forms are not simply a response to culture. At higher pH, chambers

were usually visibly more heavily calcified (Fig. 3.8c), and growth rates were higher

(see Table 3.2). At pH 7.554, tests were visibly thinner and often possessed abnormally

wide apertures, with evidence in some cases that chambers may have been partially

dissolved or reabsorbed during ontogeny (see Fig. 3.8d).
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Figure 3.8: Examples of foraminifera grown in culture: (A) healthy G. ruber, with
symbionts spread out within a well-developed halo of spines; (B) Foraminifera grown
under low pH, with poorly developed spines and dense shroud of symbionts; (C) Test
showing erratic pattern of chamber addition, as sometimes seen under high pH (D)
Normal test of G. ruber, similar to those seen in sediment samples (Hemleben et al.,
1989), as produced in all three pH experiments; (E) Test with large apertures and thinly
calcified chambers that may be indicative of dissolution, as sometimes seen under low
pH. Note that examples C and E are not representative of the whole experimental

group, but are extremes picked for illustration purposes.
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Culture 1 29/01/2010 8.174 0.007 26 37.2 106 57 54 6 200.0 365.4 590 1.39
Culture 2 10/02/2010 7.894 0.013 26 37.2 105 67 64 10 178.1 441.9 902 1.19
Culture 3 10/03/2010 7.554 0.013 26 37.2 120 48 40 9 197.7 339.6 303 0.35
Tow 1 27/01/2010 8.128 0.005 22 40.4
Tow 2 08/02/2010 8.116 0.005 23 40.4
Tow 3 07/03/2010 8.103 0.005 23 40.4

Table 3.2: Results of culturing experiments at Eilat, Spring 2010.

a Indicates the number of foraminifera grown at each pH treatment.
b Indicates the number of foraminifera that grew in mass during culture and underwent gametogenesis.
c The percentage of individuals cultured that grew and survived to gametogenesis in culture.
d As determined by micrometer and inverted light microscope.
e The total mass of calcite analysed via MC-ICPMS, of which 75-92 % was grown in culture.
f Based on the pre-culture mass as estimated from the size-mass relationship in Fig. 3.6 and the end-culture mass as weighed at the University of Bristol, and represents the mean of
the growth rates of each individual foraminifera per treatment.
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3.3.2 MC-ICPMS Results

The results of boron isotope analyses of culture, core-top, tow, sediment trap and

down-core samples (along with the relevant mass-balance corrections in culture

experiments) are given in Table 3.3. These data are plotted in �11BCaCO3-�
11BB(OH)�4

space (Fig. 3.9) and York-fit linear regression of culture data provides a

�11BCaCO3-�
11BB(OH)�4

relationship described by equation 3.6 below.

�11BB(OH)�4
=

�11B
measured

� 9.52± 1.51

0.60± 0.08
(3.6)

Uncertainty on this linear fit, accounting for error in analytical and in situ �11B values

York (1968), is calculated using Isoplot (Ludwig, 2003) and is shown in Fig. 3.9 as a

shaded band. The slope (i.e. pH sensitivity) of this culture calibration is within

uncertainty of existing culture and inorganic calibrations (see Table 3.1), and is

significantly lower than the theoretical pH sensitivity of borate ion in seawater (as

indicated by a slope of < 1). For comparison, towed control specimens and coretop

specimens are also plotted. There is no discernible e↵ect of geographical location nor

sample material type, suggesting that sedimentation or regional di↵erences do not

influence recorded �11B. Although these data are permissively in agreement with the

slope (i.e. �11B-pH sensitivity) of the culture calibration (a York regression, albeit

statistically non-significant, of the 300-355 µm size-fraction has a slope of 0.45 ± 0.25

at 95 % confidence), there is a tendency toward lower values of �11B than the culture

calibration would predict in size fractions smaller than ⇠380 µm in diameter, and

higher values in larger size fractions (see Fig. 6). As such, and because the spread in

pH in the core-top samples alone is too small for a precise �11B-pH calibration, we

suggest modification of the culture calibration equation to reflect the size fractions

used down-core. Thus for the commonly-used 300-355 µm size fraction a correction of

-0.65 (see Fig. 3.11) should be applied to the intercept value ‘c’ of the culture

�11BCaCO3-�
11BB(OH)�4

relationship (equation 3.6).

�11BB(OH)�4
=

�11B
measured

� 8.87± 1.52

0.60± 0.08
(3.7)
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Figure 3.9: New culture calibration of G. ruber. York-fit regression plotted using
Isoplot (Ludwig, 2003), with dotted lines and grey band defining 95 % confidence inter-
vals (MSWD= 0.0031). X-error bars for core-top samples are 2 standard deviations of
intra-annual variability in calculated monthly �11BB(OH)�4

, while for cultures the error
represents 2 standard errors of the mean pH of all culture flasks, and for sediment trap
samples it reflects the range of �11BB(OH)�4

between Dec-Feb 2007. Y-error is the an-

alytical reproducibility as calculated by Equation 2.2 (except in the cultured samples,
where they reflect a 2 � of 10,000 Monte Carlo simulations- see Section 3.2.1.3).

The uncertainty on the intercept in this relationship is a quadratic addition of two

standard errors of the mean o↵set from culture for the 300-355 µm fraction of the

core-top samples (-0.65 h) and the uncertainty in the original culture-calibration York

regression intercept. Similarly, we suggest a correction of -0.83 h for the 250-300 µm

size fraction, and -0.16 h for samples of 355-400 µm. For other size fractions the

culture calibration may be corrected using the relationship between test size and o↵set

from culture in Fig. 3.11 (o↵set = [0.005*average size] - 2.185, R2= 0.33), although it

must be noted that the narrow size range of G. ruber in core-tops and the large ratio

of analytical uncertainty to signal mean that the relationship is not statistically robust,

and as such wherever possible we would advocate using size fractions tested here.

Indeed, given the limitations of our dataset, we encourage prior verification of the

consistency of this size fraction e↵ect at the sites of any future downcore

reconstructions.
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3.4 Downcore reconstruction

The results of boron-based pCO2 reconstruction at Site GeoB1523-1 are plotted in

Fig. 3.10, along with pCO2 calculated from the G. ruber �11B data of Foster (2008)

from ODP 999A (corrected using a pre-industrial �pCO2 of 21 ppm calculated as

discussed above). A cubic spline was plotted using Analyseries (Paillard et al., 1996),

and the bounds of uncertainty (±17 ppm: individual uncertainty of 29 ppm /
p
2) on

this spline are shaded. For comparison, the data are plotted with atmospheric pCO2

derived from ice cores (Lüthi et al. 2008 and references within, Lourantou et al. 2010

with ages recalculated as per Lemieux-Dudon et al. 2010) and are also compared to

pCO2 reconstructed assuming a constant vital e↵ect of 0.8 h (as per Foster 2008).

The mean deviation from atmospheric pCO2 measurements from ice cores and those

calculated from 999A and GeoB1523-1 using our new calibration is -5 ppm, with a 2�

of ± 29 ppm.
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Figure 3.10: Down-core reconstructed pCO2 from ODP site 999A (crosses, Foster
(2008)) and GeoB1532-1 (circles, this study), compared to CO2 concentrations from
ice cores (black line). The thick red line is a cubic spline plotted on evenly subsampled
values from both sites, as calculated using Analyseries (Paillard et al., 1996), with the
shaded area reflecting uncertainty on the spline of ±17 ppm (i.e. 29 ppm individual
uncertainty /

p
2). Note that these data are corrected for local ocean-atmosphere dis-

equilibrium, which is taken as the modern mean annual values (from Takahashi et al.
(2009)) corrected for the pre-industrial with reference to Gloor et al. (2003): +21 ppm
(999A) and +27 ppm (GeoB1523-1). Also plotted (green line) is an equivalent spline
through pCO2 reconstructions based on a constant vital e↵ect ‘a’ (see Equation 3.4) of
+0.8 h as applied by Foster 2008), illustrating the improved fit of the new calibration.
Uncertainty on each individual measurement is plotted as a grey bar (bottom right):
uncertainty on �11B measurements is derived from long term reproducibility at the Uni-
versity of Bristol, while uncertainty on pCO2 reconstructions is a quadratic addition
of the various uncertainties on reconstructed pH, alkalinity and temperature. Within
frame is a cross-plot of ice-core derived vs. reconstructed pCO2, with uncertainty on
the 1:1 line (shown as grey shaded region) representing 6 ppm uncertainty on ice-core

measurements (from Ahn et al., 2012).
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Table 3.3: Measured �11B, and Calculated and Derived in situ conditions, for Culture and Open-Ocean Samples
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Eilat, Culture 1 Culture n/a n/a 29.50 34.92 26 37.2 8.574 2392 277 8.184 0.007 19.76 0.09 21.35 0.23 0.907 21.46 0.26

Eilat, Culture 2 Culture n/a n/a 29.50 34.92 26 37.2 8.574 2189 576 7.904 0.013 16.66 0.12 19.66 0.21 0.945 19.63 0.25

Eilat, Culture 3 Culture n/a n/a 29.50 34.92 26 37.2 8.574 2027 1415 7.564 0.013 14.22 0.06 18.72 0.31 0.770 18.20 0.43

Eilat, Tow 1 Tow < 10 n/a 29.50 34.92 22 40.40 8.605 2500 330 8.128 0.005 18.83 0.06 20.25 0.22

Eilat, Tow 2 Tow < 10 n/a 29.50 34.92 23 40.32 8.594 2508 342 8.116 0.005 18.82 0.06 20.23 0.33

Eilat, Tow 3 Tow < 10 n/a 29.50 34.92 23 40.44 8.593 2500 354 8.103 0.005 18.68 0.06 20.44 0.23

CAR-22(z),

sensu stricto,

250-300 µm

Sediment

trap

150 n/a 10.50 64.66 24.17 36.70 8.598 2412 388 8.066 0.018 18.21 0.10 20.05 0.19

CAR-22(z),

sensu stricto,

300-355 µm

Sediment

trap

150 n/a 10.50 64.66 24.17 36.70 8.598 2412 388 8.066 0.018 18.21 0.10 20.17 0.19

Eilat, sensu

stricto, 250-300

µm

Grab

sample

300 Hol. 29.50 34.92 23.76 40.72 8.582 2510 275 8.188 0.008 19.84 0.28 20.31 0.21
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Eilat, sensu

stricto, 300-355

µm

Grab

sample

300 Hol. 29.50 34.92 23.76 40.72 8.582 2510 275 8.188 0.008 19.84 0.28 21.25 0.42

MC 497, sensu

stricto, 300-355

µm

Core-top 1000 Hol. 23.53 63.31 26.86 36.37 8.568 2376 295 8.152 0.020 19.57 0.45 20.87 0.18

MC 497, sensu

stricto, 355-400

µm

Core-top 1000 Hol. 23.53 63.31 26.86 36.37 8.568 2376 295 8.152 0.020 19.57 0.45 20.97 0.17

MC 497, sensu

stricto, 400-455

µm

Core-top 1000 Hol. 23.53 63.31 26.86 36.37 8.568 2376 295 8.152 0.020 19.57 0.45 21.87 0.18

GGC-48, mixed

morphotype,

250-300 µm

Core-top 3055 Hol. 0.00 161.00 29.41 34.61 8.549 2276 329 8.102 0.066 19.20 0.81 20.14 0.20

GGC-48, mixed

morphotype,

300-355 µm

Core-top 3055 Hol. 0.00 161.00 29.41 34.61 8.549 2276 329 8.102 0.066 19.20 0.81 20.21 0.33

ODP 664, sensu

stricto, 300-355

µm

Core-top 3817 2.9-3.6 0.10 -23.23 26.81 35.77 8.572 2341 306 8.137 0.073 19.26 0.71 20.82 0.19



C
h
ap

ter
3.

S
ym

bion
t-bearin

g
foram

in
ifera

99

S
a
m

p
le

T
y
p
e

D
e
p
th

(m
)

A
g
e
(k

y
r
B
P
)a

L
a
ti
tu

d
e
(�

)

L
o
n
g
it
u
d
e
(�

)

T
(�

C
)b

S
c

p
K

⇤ B
d

T
A
lk

(µ
m

o
l/
k
g
)e

p
C
O

2
(µ

a
tm

)f

p
H

(t
o
ta

l)
g

2
�
h

�1
1
B

B
(O

H
)� 4

i

2
�
j

�1
1
B

C
a
C
O

3
k

2
�
l

P
B

c
u
lt
u
r
e
m

�1
1
B

c
o
rr
e
c
te

d
n

2
�
o

G4, sensu

stricto, 300-355

µm

Core-top 831 0.9 -28.42 167.25 21.95 35.82 8.628 2361 260 8.202 0.030 19.44 0.29 20.64 0.19

G4, sensu

stricto, 355-400

µm

Core-top 831 0.9 -28.42 167.25 21.95 35.82 8.628 2361 260 8.202 0.030 19.44 0.29 21.43 0.20

T329, sensu

stricto, 250-

300µm

Core-top 451 2.9 -12.96 173.57 28.63 34.79 8.556 2288 270 8.171 0.024 19.96 0.27 20.83 0.18

T329, sensu

stricto, 300-355

µm

Core-top 451 2.9 -12.96 173.57 28.63 34.79 8.556 2288 270 8.171 0.024 19.96 0.27 20.73 0.19

T329, sensu

stricto, 355-400

µm

Core-top 451 2.9 -12.96 173.57 28.63 34.79 8.556 2288 270 8.171 0.024 19.96 0.27 21.29 0.16

OC476-SR223,

sensu stricto,

250-355 µm

Core-top 2860 0.7 -33.53 166.53 19.33 35.70 8.660 2353 262 8.201 0.013 19.04 0.37 20.24 0.38

999A Down-core 2827

+0.05

3.9 12.75 -78.73 28.23 35.5 8.557 2330 282 8.15 0.03 20.67 0.25 19.63 0.35
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999A Down-core 2827

+0.11

4.6 12.75 -78.73 28.44 35 8.557 2301 265 8.16 0.03 20.78 0.25 19.82 0.37

999A Down-core 2827

+0.15

5 12.75 -78.73 27.77 35 8.561 2301 283 8.14 0.03 20.59 0.25 19.51 0.34

999A Down-core 2827

+0.31

7.8 12.75 -78.73 28.19 35.55 8.557 2333 264 8.17 0.03 20.82 0.25 19.89 0.38

999A Down-core 2827

+0.31

7.8 (2) 12.75 -78.73 28.19 35.55 8.557 2333 276 8.15 0.03 20.72 0.25 19.71 0.36

999A Down-core 2827

+0.39

9.5 12.75 -78.73 27.59 36.1 8.562 2366 279 8.15 0.03 20.68 0.25 19.65 0.36

999A Down-core 2827

+0.43

10.3 12.75 -78.73 27.50 36.4 8.561 2384 254 8.18 0.03 20.93 0.25 20.06 0.40

999A Down-core 2827

+0.48

11.7 12.75 -78.73 27.04 36.51 8.567 2390 272 8.16 0.03 20.72 0.25 19.72 0.36

999A Down-core 2827

+0.57

14 12.75 -78.73 27.38 36.82 8.560 2408 251 8.19 0.03 20.98 0.25 20.15 0.41

999A Down-core 2827

+0.61

15.1 12.75 -78.73 27.41 37.1 8.559 2425 249 8.19 0.03 21.02 0.25 20.22 0.42
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999A Down-core 2827

+0.61

15.1

(2)

12.75 -78.73 27.41 37.1 8.559 2425 237 8.21 0.03 21.15 0.25 20.43 0.44

999A Down-core 2827

+0.71

17.3 12.75 -78.73 26.69 37.11 8.569 2426 240 8.21 0.03 21.04 0.25 20.25 0.42

999A Down-core 2827

+0.82

19.2 12.75 -78.73 26.17 37 8.575 2419 176 8.30 0.04 21.75 0.25 21.43 0.57

999A Down-core 2827

+0.93

21.1 12.75 -78.73 26.01 36.95 8.579 2416 219 8.24 0.03 21.20 0.25 20.51 0.45

999A Down-core 2827

+1.02

22.5 12.75 -78.73 26.69 37.18 8.569 2430 220 8.23 0.03 21.26 0.25 20.62 0.47

999A Down-core 2827

+1.13

24.8 12.75 -78.73 26.58 37.05 8.573 2422 195 8.27 0.04 21.51 0.25 21.04 0.52

999A Down-core 2827

+1.20

26.3 12.75 -78.73 26.34 36.84 8.575 2410 185 8.28 0.04 21.62 0.25 21.22 0.54

999A Down-core 2827

+1.20

26.3

(2)

12.75 -78.73 26.34 36.84 8.575 2410 180 8.29 0.04 21.69 0.25 21.33 0.56

GeoB1523-1 Down-core 3292

+0.05

3.1 3.83 -41.62 27.76 35.54 8.563 2333 259 8.17 0.03 20.78 0.24 19.81 0.38
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GeoB1523-1 Down-core 3292

+0.10

6 3.83 -41.62 27.40 35.64 8.566 2338 264 8.16 0.02 20.72 0.23 19.71 0.36

GeoB1523-1 Down-core 3292

+0.15

8.5 3.83 -41.62 27.62 35.86 8.562 2352 240 8.19 0.03 20.97 0.24 20.14 0.42

GeoB1523-1 Down-core 3292

+0.20

10.5 3.83 -41.62 26.94 36.10 8.569 2366 262 8.17 0.03 20.73 0.24 19.74 0.37

GeoB1523-1 Down-core 3292

+0.25

12.6 3.83 -41.62 26.52 36.33 8.572 2379 206 8.24 0.03 21.29 0.23 20.66 0.48

GeoB1523-1 Down-core 3292

+0.30

14.6 3.83 -41.62 26.22 36.52 8.575 2391 220 8.22 0.03 21.13 0.24 20.39 0.45

GeoB1523-1 Down-core 3292

+0.35

16.6 3.83 -41.62 24.83 36.64 8.590 2398 194 8.26 0.04 21.33 0.26 20.73 0.50

GeoB1523-1 Down-core 3292

+0.40

18.2 3.83 -41.62 25.26 36.69 8.585 2401 194 8.26 0.04 21.37 0.26 20.79 0.51

GeoB1523-1 Down-core 3292

+0.45

19.1 3.83 -41.62 24.85 36.69 8.590 2401 209 8.24 0.03 21.15 0.25 20.43 0.46

GeoB1523-1 Down-core 3292

+0.55

20.9 3.83 -41.62 25.76 36.65 8.580 2399 217 8.23 0.03 21.14 0.26 20.42 0.46
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GeoB1523-1 Down-core 3292

+0.65

23.9 3.83 -41.62 25.22 36.51 8.587 2390 225 8.22 0.03 20.99 0.25 20.17 0.43

GeoB1523-1 Down-core 3292

+0.75

27.4 3.83 -41.62 25.31 36.34 8.587 2380 208 8.24 0.03 21.17 0.25 20.47 0.47

GeoB1523-1 Down-core 3292

+0.85

32.9 3.83 -41.62 24.88 36.28 8.592 2376 253 8.18 0.02 20.67 0.25 19.64 0.37

Table 3.3: The results of boron isotope analyses on culture, core-top, sediment trap, tow and down-core (GeoB1523-1) samples. All carbonate
system and pK⇤

B calculations use CO2sys.m (van Heuven et al., 2011) and the constants of Dickson (1990), Lueker et al. (2000) and Lee et al. (2010).
Further details may be found in the Supplementary Tables B.1 and B.2. Note that we see no influence of boron from contaminant clays, with Al/Ca

ratios all below 100 µmol/mol.
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aCore-top sediments were where possible determined as undisturbed Holocene by either the presence of stained benthic foraminifera (MC 497), existing age-model (ODP 664, Raymo
et al. 1997; GGC48, E. Tappa pers. comm.) or carbon dating (G4, T329, OC476-SR223; Bostock, pers. comm.). Down-core ages derived from existing age models by Schmidt et al.
(2004; 999A) and Gingele et al. (2000; GeoB1523-1).

bFor tow and culture samples, temperature was gauged by direct measurement. For sediment trap samples, temperature is interpolated from data from IMAR (see Supplementary
Table B.1), while core-top temperature is mean annual SST interpolated from the Takahashi et al. (2009) database. Downcore temperatures for 999A are interpolated from Schmidt
et al. (2004), and at GeoB1523-1 are derived from Mg/Ca data (see Supplementary Information) and the general calibration of Anand et al. (2003).

cFor tow and culture samples, salinity was gauged by direct measurement. For sediment trap samples, salinity interpolated from data from IMAR (see Supplementary Table B.1).
Core-top salinity is mean annual salinity interpolated from the Takahashi et al. (2009) database. Downcore salinity for 999A and GeoB1523-1 are derived from sea level estimates.

dCalculated from temperature, salinity and depth.
eFor tow and culture samples, alkalinity was gauged by direct measurement. For sediment trap samples, alkalinity interpolated from data from IMAR (see Supplementary Table B.1).

Core-top alkalinity is derived from regional salinity-alkalinity relationships (from GLODAP/CARINA data <20m deep) and mean annual salinity interpolated from the Takahashi et al.
(2009) database. Downcore alkalinity for 999A is from Foster (2008) and for GeoB1523-1 is derived from reconstructed salinity.

fFor tows, culture and downcore samples, pCO2 reconstructed from TAlk and either pH reconstructed using the new calibration (Equation 3.7, downcore) or Total DIC as measured
directly (tows, cultures). For sediment trap samples, pCO2 is interpolated from data from IMAR (see Supplementary Table B.1). Core-top �pCO2 is reconstructed by application of
the mean annual �pCO2 at each site (interpolated from nearby sites from Takahashi et al. 2009 and corrected for post-industrial changes in �pCO2 according to model results from
Gloor et al. 2003) to pre-industrial atmospheric pCO2.

gFor tows and sediment traps, pH is calculated from measurements of alkalinity and either DIC (tows) or pCO2 (sediment traps). For core-tops the pH is a mean annual pH
interpolated from Takahashi et al. (2009) and calculated from estimated alkalinity and pCO2. For cultured samples, pH is calculated as the mean of the mean pH observed by each
individual foraminifera during culture (as measured using a potentiometric electrode but cross-calibrated to DIC/TAlk-derived pH, see Fig. 3.4). For down-core samples, pH is derived
from �11B measurements transformed using the new calibration for G. ruber(Eq. 3.7).

hUncertainty on culture pH measurements is 2 standard errors of the mean of the average pHs experienced by constituent forams, while uncertainty on the pH estimates for tows
is based on analytical reproducibility at the UK-OARP Carbonate Chemistry Facility. Uncertainty on core-top pH is the interpolated intra-annual variability in pH at that site (see
Supplementary Table B.2), while in down-core samples it signifies the pH uncertainty resultant from the uncertainty on corrected �11BCaCO3 . At Cariaco basin (*), pH is interpolated
between cruise measurements taken a month either side of sediment trap deployment, and uncertainty reflects the range in pH between these two months (see Supplementary Table B.1).

iAs calculated from estimated pH and pK

⇤
B using the general boron isotope-pH equation (1.10).

jReflecting the uncertainty in pH and pK

⇤
B .

kIncludes published data from 999A from Foster (2008) that are re-interpreted here.
lUncertainty on �11Bmeasurements is derived from Eq. 2.5 (Cultures, Tows, GeoB1523-1), and Eq. 2.2 (core-tops, sediment traps), except for published data from 999A (Foster,

2008) where the published uncertainty is quoted.
mProportion of boron incorporated during culture, see Eq. 3.3.
n�11Bcorrected for culture samples is the �11B of carbonate grown under culture conditions, having been mass-balance corrected for test mass grown out of culture (via Eq. 3.3). For

downcore samples, it refers to transformations of raw �11B data using the new G. ruber calibration (Eq. 3.7), and is analogous to �11B
B(OH)�4

.
oUncertainty on �11Bcorrected is 2� of 10,000 Monte Carlo simulations of uncertainty in towed ‘control’ and culture measurements (for culture samples, see section 3.2.1.3), or quadratic

addition of measurement reproducibility and calibration uncertainty (down-core samples).
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3.5 Discussion

3.5.1 pH sensitivity of �11BG.ruber lower than �11BB(OH)�4

pH is clearly a strong control on �11B in G. ruber (Fig. 3.9), but these new data do

not fall on the predicted relationship of seawater borate ion, as epifaunal benthic

foraminifera do (Rae et al., 2011). Specifically, our data lie above the �11BB(OH)�4
-pH

curve, and show a pH sensitivity ⇠40 % lower than that predicted for �11BB(OH)�4
in

seawater, confirming previous observations in other symbiont-bearing planktonic

species (Sanyal et al., 1996, 2001, Hönisch et al., 2003). The causes of this deviation

from the aqueous geochemical basis of the proxy are potentially manifold. Previous

foraminiferal studies have ascribed a lower-than-predicted pH sensitivity in �11B to: (i)

incorporation of boric acid (Klochko et al., 2009); (ii) elevated (compared to ambient)

pH inside the seawater vacuoles (Rollion-Bard and Erez, 2010); (iii) modification of the

micro-environment around the foraminifera by respiration, calcification and

photosynthesis (Hönisch et al., 2003, Zeebe et al., 2003); and (iv) analytical issues

relating to the NTIMS approach used by Sanyal et al. (1996, 2001) and Hönisch et al.

(2003). These new results for G. ruber using MC-ICPMS, where accuracy has been

demonstrated (Ni et al., 2010), confirms that analytical issues do not play a role in

generating the shallower pH sensitivity in planktic foraminifera. O↵sets in absolute

�11B between NTIMS and MC-ICPMS of the order of 1-2 h are observed for a variety

of foraminiferal species (e.g., Cibicidoides weullerstorfi ; see Rae et al. 2011) but, as

also supported by an ongoing interlaboratory comparison study (Foster et al., 2013),

relative changes do appear to be largely reproducible between NTIMS and MC-ICPMS

(see Fig. 8, Rae et al., 2011).

There currently appears to be little consensus regarding the relative importance of the

other three phenomena proposed above to explain a shallower than predicted

relationship between �11B and pH. A key observation requiring explanation is that all

planktonic foraminiferal calibrations to date show a pH sensitivity (slope ‘m’) within

uncertainty of that seen in inorganic precipitates (�11BCaCO3= 0.75 (± 0.15) * the pH

sensitivity of �11BB(OH)�4
; Sanyal et al. 2000). Similarly reduced pH sensitivity is

evident in the symbiont-bearing Amphistegina lobifera (Rollion-Bard and Erez, 2010)

and in numerous species of coral (Hönisch et al., 2004, Reynaud et al., 2004, Krief
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Figure 3.11: O↵set of core-top, tow and sediment trap samples from our culture
calibration, as a function of size fraction. Error bars in size-fraction refer to the sieve
fractions, or where available, two standard errors of the mean measured test diameter.
Red markers indicate the mean value for the three most commonly used size fractions,
with y-errors corresponding to two standard errors of the mean o↵set. Dotted vertical

line denotes the mean end-culture diameter.

et al., 2010, Trotter et al., 2011, Anagnostou et al., 2012). That the sensitivities

observed in a broad range of biogenic carbonates are similar to those seen in inorganic

precipitates would implicate an inorganic process e.g., a rate dependency in CaCO3

precipitation. A key stumbling block, however, are the epifaunal benthic data of Rae

et al. (2011, Fig. 2) and Yu et al. (2010), that lie within uncertainty of the

�11BB(OH)�4
, seemingly una↵ected by any such inorganic process. This implies that the

agreement between the �11B of aqueous borate and benthic foraminiferal carbonate is

either purely fortuitous, the result of a several competing processes operating in

tandem to nearly precisely cancel each other out, or that this inorganic process either

does not exist or is not universal and benthic foraminifera are the exception to the

rule. It is also worth noting that all the other foraminifera so far calibrated are

symbiont bearing, and laboratory observations (Jørgensen et al., 1985, Rink et al.,

1998, Köhler-Rink and Kühl, 2005) strongly implicate the alteration of the

foraminiferal microenvironment by symbionts and life processes. As discussed below,

the magnitude of the vital e↵ect in G. ruber (and in G. sacculifer ; Hönisch and

Hemming 2004) is dependent on foraminiferal size, therefore life processes may have a

role to play in this behaviour. However, a full resolution of this issue is beyond the

scope of this current contribution and will require additional studies of both

symbiont-bearing and non-symbiont bearing foraminifera, and of inorganic carbonates

precipitated in equilibrium at rates comparable to those seen in biogenic carbonates.
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3.5.2 �11B o↵set between culture and non-culture: a size fraction

e↵ect on �11B in G. ruber

While towed, sediment trap and core-top specimens are permissively in agreement with

the pH sensitivity of �11BCaCO3 observed in our cultures, it is apparent that there is a

discrepancy in �11B values predicted by the culture calibration and some

measurements of non-culture specimens of G. ruber (Fig. 3.9). The degree of o↵set

from the calibration does not correlate with in situ temperature (R2= 0.04) or the

saturation state of bottom water at these coretop sites (R2= 0.05), suggesting there is

no discernible temperature or dissolution e↵ect. Furthermore, there is little evidence

for any discrepancy between morphotypes (G. ruber sensu stricto or sensu lato) that

might e↵ect our mixed morphotype culture (see Fig. 3.2), despite their phylogenetic

disparity (Aurahs et al., 2011). O↵set from our culture calibration does, however, show

some correlation with test size fraction (see Fig. 3.11). Previous evidence (Ni et al.,

2007) for a size-fraction e↵ect in G. ruber is ambiguous because of large margins of

uncertainty in �11B measurements ( ⇠ ± 0.8 h vs. ⇠ ± 0.25 h here). Increasing �11B

with size is, however, resolvable in the closely-related species G. sacculifer (Hönisch

and Hemming, 2004, Ni et al., 2007). Moreover, size-fraction e↵ects in G. ruber have

been noted in �13 C and �18O (e.g., Kroon and Darling, 1995), B/Ca (Ni et al., 2007),

and in Mg/Ca and Sr/Ca (e.g. Friedrich et al., 2012).

The cause of any size fraction e↵ect on �11B is not clear. Preferential dissolution

(Hönisch and Hemming, 2004, Ni et al., 2007) seems unlikely, since a) similar o↵sets

from aqueous �11BB(OH)�4
are reproduced even in towed samples (see Fig. 3.9), b)

there is no relationship between degree of o↵set and deepwater carbonate saturation at

the site of deposition, and c) the lack of any geochemically distinct gametogenic calcite

in G. ruber (Caron et al., 1990) should make the issue of preferential dissolution less

pertinent in this species (see also Seki et al., 2010, Fig. 7a). Instead we support the

suggestion by Hönisch and Hemming (2004) that a size-fraction e↵ect in �11B is due to

intensified micro-environmental alteration by symbionts in larger specimens. That said,

we query the assertion by Hönisch and Hemming (2004) that increasing �13C and �11B

with size must be due to larger specimens living at shallower depths (thus experiencing

a stronger light intensity and stronger microenvironment alteration). While this seems

consistent with Caron et al. (1982), we urge some caution in this interpretation
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without direct ecological evidence for a bias towards larger test size in G. ruber from

shallower waters: Bijma et al. (1990) report living individuals measuring anywhere

between 125 µm and 708 µm within the uppermost 5 m of the Red Sea at all stages in

G. ruber ’s semilunar life-cycle. Besides, foraminifera towed from < 10 m record lower,

not higher, �11B than foraminifera cultured at light levels equivalent to ⇠20 m water

depth (though we concede these individuals might conceivably have grown to larger

size - and heavier �11B - had they completed their life cycle at this depth).

It is instead likely that the magnitude of these microenvironment e↵ects might change

with test size without any need to invoke changes in habitat depth. Photosynthesis by

symbionts in the microenvironment surrounding planktic foraminifera raises pH, while

respiration and calcification lower pH (Jørgensen et al., 1985, Köhler-Rink and Kühl,

2005, Rink et al., 1998). Crucially, rates of respiration and photosynthesis in culture

specimens have been seen to change with test size (Lombard et al., 2009, Rink et al.,

1998), with photosynthesis increasing relative to respiration in larger specimens of G.

ruber (Lombard et al., 2009). In addition, as foraminifera grow, the di↵usive boundary

layer around their tests is expanded, lengthening timescales for di↵usion of carbon

through the microenvironment. As such, equilibration of the microenvironment with

the ambient seawater slows, and as such any microenvironment pH alteration would be

accentuated (see model of Wolf-Gladrow et al., 1999). While more in situ

microelectrode measurements are required to fully test these hypotheses, they could

explain the observed patterns in recorded �11B we see here. It is also possible that

increased test size might be resultant from, not a driver of, increased symbiont activity,

with elevated �11B an inevitable result. Planktonic foraminifera acquire algal

symbionts early in their life cycle (Hemleben et al., 1989). Should the activity of

symbionts in the foraminiferal microenvironment impart an advantage to the

calcification of the host by raising external pH and ⌦CaCO3 (reflected in �11B) and thus

reducing energetic expenditure needed to raise internal vacuole pH (as suggested by

Bentov et al., 2009), foraminifera that happen to succeed in acquiring symbionts

earlier in their ontogeny might grow more rapidly, and thus attain larger size prior to

gametogenesis. Clearly additional modelling and field observation are required to

investigate these hypotheses further.
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3.5.3 Applying the G. ruber �11B-pH calibration to downcore data

Reconstructed pCO2 from Sites GeoB1523-1 and ODP 999A using this new calibration

for G. ruber tracks reconstructions from ice cores very closely, with average deviation

(- 5 ppm) and average absolute deviation (25 ppm) from ice core pCO2 within

propagated uncertainty of ± 29 ppm. Although broadly similar results can be

generated with the approach of Foster (2008), the new calibration more accurately

reproduces the 90 ppm magnitude of deglacial pCO2 increase seen in ice core

reconstructions (�pCO2= ⇠80 ppm vs. ⇠50 ppm using Foster 2008. While these sorts

of improvements in fit are within uncertainty over these short timescales, the

importance of the lower pH sensitivity documented here is magnified in deeper time

when pCO2 is likely to have been higher.

3.6 Conclusions

This contribution represents a further demonstration of the dominance of pH as a

control on foraminiferal �11B. It is the first morphospecies-specific foraminiferal culture

calibration analysed using MC-ICPMS, and the first to incorporate globally-distributed

cultured, towed, sediment trap and core-top foraminifera. The new method we

advocate for presenting culture calibrations allows for greater ease of comparison and

uncertainty calculation and propagation. We show that recorded �11B in G. ruber

deviates markedly from the simple inorganic basis of the proxy, corroborating previous

foraminiferal culture studies analysed using N-TIMS (Sanyal et al., 1996, 2001), and

lending some support to the results of published down-core reconstructions based on

pH-sensitivities of �11BCaCO3 that are lower than �11BB(OH)�4
(e.g., Palmer and

Pearson, 2003, Hönisch and Hemming, 2005b, Palmer et al., 2010). We show that,

regardless of their phylogenetic separation (Aurahs et al., 2011), sensu stricto and

sensu lato morphotypes record similar �11B. We also document for the first time a

size-fraction e↵ect in �11B
G. ruber

which must be taken into account in future down-core

application. However, as we illustrate for the last 30 kyr BP (Fig. 3.10), by analysing

tightly constrained size fractions and applying a species-specific culture calibration,

accurate and precise estimates of past levels of atmospheric CO2 can be reconstructed.



Chapter 4

Exploring vital e↵ects in planktic

foraminiferal �11B

Abstract

The boron isotope proxy can generate be used to accurately and precisely reconstruct

atmospheric CO2 concentrations, providing species- and size-fraction-specific

calibrations are used (as shown in Chapter 3). However, further analysis is needed to

allow for full exploration of the nature of foraminiferal ‘vital e↵ects’ in �11B. Here the

nature of vital e↵ects in planktic foraminifera is explored through comparison of

symbiont-barren species (including Globigerina bulloides) and a deep-dwelling

symbiont-bearing species (Orbulina universa) to existing calibrations. While a�rming

the importance of microenvironment alteration in determining both absolute values

and the pH sensitivity of �11BCaCO3 , this chapter highlights some previously

unreported complications regarding the microenvironment of the deep-dwelling

symbiont-bearing species O. universa. This chapter incorporates two new

MC-ICPMS-based calibrations, including the first calibration of the symbiont-barren

species Globigerina bulloides, thereby broadening the range of environments in which

the boron isotope-pH proxy can be applied.

110
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4.1 Introduction: Outstanding issues

4.1.1 Understanding pH-sensitivity in foraminifera

In Chapter 3 (Henehan et al., 2013) the pH-sensitivity of �11B in Globigerinoides

ruber, a valuable species for palaeo-CO2 reconstruction because of its reliably

mixed-layer depth habit (Hemleben et al., 1989), was calibrated. While this calibration

extends the applicability of the boron isotope proxy and corroborates the lowered pH

sensitivities seen in previous calibration studies, it does not in itself dramatically

improve our understanding of vital e↵ects in the �11B of planktic foraminifera. As with

other published planktic foraminiferal calibrations (Sanyal et al., 1996, 2001), G. ruber

demonstrates a pH-sensitivity in �11B that is lower than that of ambient borate ion, in

contrast to data from epifaunal benthic foraminifera, that appear to incorporate �11B

signals from B(OH)4� without fractionation (Rae et al., 2011).

Clearly, then the issue of pH sensitivity of �11B recorded in foraminiferal carbonates

remains contentious (see Section 1.4.3 for further discussion). Existing models of

photosynthesis and respiration in the microenvironment of foraminifera (Zeebe et al.,

1999a, 2003) suggest that any micro-environment-derived vital e↵ect on recorded �11B

should be constant across a range of pH (see Section 1.4.2.3). In other words, recorded

�11BCaCO3 should be elevated above �11BB(OH)�4
in symbiont-bearing foraminifera and

lowered below ambient �11BB(OH)�4
in symbiont-barren foraminifera (see Section

1.4.2.3), but the pH sensitivity of recorded �11B should be dictated by the inorganic

aqueous geochemical basis of the proxy (i.e. the value of 11�10KB). However, no

published calibration of planktic foraminiferal (Sanyal et al., 1996, 2001, Henehan

et al., 2013), coral (e.g. Anagnostou et al., 2012, Trotter et al., 2011, McCulloch et al.,

2012, Krief et al., 2010) or inorganically precipitated CaCO3 (Sanyal et al., 2000, He

et al., 2013) has conclusively described a pH sensitivity in agreement with empirically

observed value of 11�10KB of Klochko et al. (2006). Only in epifaunal benthic

foraminifera is the �11B of ambient aqueous B(OH)4�, and its expected pH sensitivity,

recorded in CaCO3 without fractionation (Rae et al., 2011). Perhaps unsurprisingly,

then, the similarity of inorganic and planktic foraminiferal calibrations has led some

authors to advocate some underlying, universal inorganic cause for the
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weaker-than-expected pH sensitivity observed (e.g. Hönisch et al., 2007, Hemming and

Hönisch, 2007).

As discussed briefly in Henehan et al. (2013) and Rae et al. (2011), were there some

inorganic basis for the similarity in slope of planktic foraminiferal and inorganic

calibrations (e.g. a fractionation of �11B upon incorporation, or an inappropriate value

of 11�10KB), it would require the > 40 measurements of Rae et al. (2011) to

fortuitously record the �11BB(OH)�4
(perhaps through some compensatory ‘vital

e↵ect’). But equally, advocating a biogenic cause for the weaker-than-expected

pH-sensitivity in existing calibrations would necessitate vital e↵ects (e.g. internal pH

up-regulation in corals or microenvironment alteration in foraminifera), that are not

constant across variations in ambient pH. Although this is seen in corals (Venn et al.,

2013), it would be contrary to the modelled results of Zeebe et al. (2003). In addition

it would also necessitate some additional factor influencing the published inorganic

precipitate data of Sanyal et al. (2000), such as unrepresentative precipitation rates,

inconsistent matrix e↵ects on NTIMS measurements, a poorly-defined pK⇤
B and/or

carbonate system. While new MC-ICPMS-derived measurements of inorganic

precipitates (Klein-Gebbinck et al., in prep., see section 1.4.3) cast doubt on the data

of Sanyal et al. (2000), and do not support an inorganic cause for low pH-sensitivity,

more data at oceanic pH and below are required before any assertions can be made

with full confidence.

Expanding the range of planktic foraminifera for which �11B-pH relationships are

characterised would be of great benefit in resolving this issue. As discussed in section

3.5.1, if symbiont-barren foraminifera record a pH-sensitivity that is lower than

ambient borate, then it would support an underlying (possibly inorganic) fractionation

during precipitation from aqueous borate to CaCO3 (as suggested by Hönisch et al.,

2007). If instead the pH-sensitivity is the same as (or greater than) that of aqueous

borate, it implies that weaker pH-sensitivity in existing calibrations is not attributable

to any flaw in our understanding of the geochemical basis of the proxy and the value of

11�10KB, but is likely a result of the influence of photosynthetic symbionts bu↵ering

the microenvironment around the test. Moreover, if lowered pH-sensitivity in

symbiont-bearing planktic foraminifera were derived from the presence of

photosynthetic symbionts, it might be expected that deeper-dwelling symbiont-bearing

planktic foraminifera will show pH-sensitivity closer to that of �11BB(OH)�4
than
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shallower-dwelling species (since lower light levels at depth will reduce the bu↵ering

e↵ect of symbiont photosynthesis). To explore these questions, two new calibrations

were constructed and are presented here. Firstly, �11B-pH relationships in G. bulloides

were calibrated. Since this species is spinose and typically shallow-dwelling but,

crucially, lacks symbionts, it is a useful foil to G. ruber (calibrated in Chapter 3).

Secondly, O. universa was calibrated, as an example of a deep-dwelling

symbiont-bearing species. Although often referred to as a surface/mixed-layer species,

O. universa is typically found at greater depths, even approaching the thermocline

(Fairbanks et al., 1982, Spero and Williams, 1988, Sautter and Thunell, 1991). Indeed,

in MOCNESS tows from 46 - 52 �S o↵ New Zealand (this study), high incidence of

living specimens of O. universa was seen at depths of up to 100 m (L. Northcote, pers.

comm.). Similarly Morard et al. (2009) found O. universa in MOCNESS tows from

100-200 m depth. Consequently, these two species make excellent subjects for

comparison with published calibrations of symbiont-bearing species, new and published

measurements from other symbiont-barren species (including Globoconella inflata) and

preliminary data from inorganic precipitation experiments (see section 1.4.3). Through

comparison of these calibration data, new insights are gained into the nature of

foraminiferal vital e↵ects; insights which go some way to moving future discussion from

the issue of causality to the issue of quantification and correction.

4.1.2 Previous foraminiferal calibrations: implications for vital e↵ects

Besides the calibration of G. ruber from Chapter 3, the only other published culture

calibrations of �11B in planktic foraminifera are those of the symbiont bearing species

O. universa (Sanyal et al., 1996) and G. sacculifer (Sanyal et al., 2001). As discussed

in sections 1.4.2.3 and 3.1.2, considerable issues still surround these culture

calibrations that not only limit their downcore application but also cast doubt on the

ability of microenvironment alteration (see Wolf-Gladrow et al., 1999, Zeebe et al.,

1999a, 2003) to explain vital e↵ects in foraminifera. One such issue is the large o↵set

(⇠ 3 h) that exists between G. sacculifer and O. universa calibrations (and between

core-top samples of these species). For this o↵set to be attributable to di↵erences in

microenvironment pH, it would suggest microenvironment pH in G. sacculifer is > 0.3

pH units higher than in O. universa (from Sanyal et al., 1996), and 0.25 - 0.3 pH units

higher than in G. ruber (Henehan et al., 2013). However, this is incompatible with the
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similar observations of microenvironment pH made by microelectrode in O. universa

(Rink et al., 1998, Köhler-Rink and Kühl, 2005) and G. sacculifer (Jørgensen et al.,

1985, as given in Zeebe et al. 2003). Indeed, even when di↵erences in day:night

calcification (Anderson and Faber, 1984, Lea et al., 1995) are accounted for, the �11B

o↵set between the two species seems too large to be explained by existing models of

microenvironment perturbation (Zeebe et al., 2003).

One variable that hinders interpretation of these calibrations is that of analytical

inaccuracy. As discussed by Foster et al. (2013), analysis of boron isotopes in

carbonates via di↵ering techniques (MC-ICPMS vs. NTIMS) may reproduce relative

di↵erences, but in absolute terms inter-laboratory comparability is poor; in other

words, while the pH sensitivities of these calibrations may be reliable, their position in

absolute �11B space is open to re-interpretation. However, since both the G. sacculifer

(Sanyal et al., 2001) and O. universa (Sanyal et al., 1996) calibrations were both

analysed at Stony Brook on the same instrument by the same workers, it would seem

unlikely that the di↵erence between the measured species calibrations is entirely

analytically-derived.

It is possible to approximate the interlaboratory bias at work in these calibrations:

Fig. 4.1 shows the ⇠3.3 h o↵set between core-top NTIMS measurements of G.

sacculifer from Sanyal et al. (1995), analysed at Stony Brook, and core-top

MC-ICPMS measurements of G. sacculifer from nearby sites from Foster (2008),

analysed at the Bristol Isotope Group, University of Bristol. However, if this o↵set

were similarly applied to the O. universa culture calibration of Sanyal et al. (1996)

(Fig. 4.1), the resultant calibration line would imply O. universa records pH (and

�11B) values lower than ambient conditions (i.e. it would lie below the 1:1 line, where

�11BCaCO3=�11BB(OH)�4
). Although this seems incompatible with micro-electrode

observations of higher-than-ambient pH in the microenvironment of this species (Rink

et al., 1998, Köhler-Rink and Kühl, 2005), and with microenvironment models for O.

universa (Zeebe et al., 1999a, 2003), some lines of evidence suggest that this is not

unreasonable. Firstly, Sanyal et al. (1996)’s calibration of O. universa is lighter in �11B

than their inorganic carbonate calibration line (Sanyal et al., 2000), and not heavier, as

microenvironment theory would predict (Zeebe et al., 2003) and as their calibration of

G. sacculifer is (Sanyal et al., 2001). Secondly, in G. sacculifer, the photosynthetic

compensation depth (i.e. the depth at which bu↵ering of the microenvironment via
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Figure 4.1: A representation of existing calibrations of G. sacculifer (Sanyal et al.,
2001) and O. universa (Sanyal et al., 1996) in �11BB(OH)�4

-�11BCaCO3 space (see sec-

tion 3.2.3), illustrating possible interlaboratory biases. Core-top G. sacculifer NTIMS
measurements from Sanyal et al. (1995) are o↵set by 3.32 h from MC-ICPMS measure-
ments of G. sacculifer from adjacent sites (Foster, 2008). Applying this interlaboratory
correction to existing calibrations (Sanyal et al., 1996, 2001) results in a O. universa
calibration line that lies below the 1:1 line; implying that O. universa records lower-
than-ambient pH. Uncertainty on calibration lines are calculated as 2� (lightly shaded)
and 1� (heavily shaded) as discussed in Section 4.2.3. Slight di↵erences in slope given
for these calibrations compared to those quoted in Table 3.1 and Henehan et al. (2013)
stem from the di↵erences in line-plotting method used (see section 4.2.3). For cul-
ture calibrations, X-error bars represent quoted uncertainty in pH, and Y-error bars
quoted uncertainty in NTIMS measurements. For core-tops, X-error represents esti-
mated intra-annual variability of �11BB(OH)�4

for these sites (calculated as in Henehan

et al. 2013), and Y-error is quoted analytical uncertainty from Foster (2008) and Sanyal
et al. (1995).
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photosynthesis is not great enough to cancel out the acidifying e↵ects of respiration

and calcification) is estimated at 45 m (Jørgensen et al., 1985). Average depth habitat

in O. universa may be considerably greater than in either G. ruber or G. sacculifer, as

discussed above (Fairbanks et al., 1982, Spero and Williams, 1988, Sautter and

Thunell, 1991, Morard et al., 2009, L. Northcote, unpublished data). Therefore, it is

possible that the degree of microenvironment pH elevation in O. universa is less than

in G. ruber or G. sacculifer, if not completely cancelled out. This might be supported

by the observation by Hönisch et al. (2003) that towed O. universa match more closely

the �11B of individuals grown under low-light conditions (in which symbiont

photosynthesis is minimal and microenvironment pH and �11BB(OH)�4
should be

lowered by respiration) than those grown under saturated light conditions (under

which photosynthesis should significantly raise microenvironment pH and

�11BB(OH)�4
). While clearly the calibration of Sanyal et al. (1996) was not carried out

at >45 m water depth, these culture experiments were performed without any

additional illumination beyond normal laboratory ceiling lighting, so light levels may

have been below P
max

(i.e. light levels required for optimum photosynthesis), and

comparable to those seen at depth. Here a new in situ MC-ICPMS-derived calibration

for O. universa, using tow, sediment trap and core-top sample material, is presented,

primarily to inform discussion of vital e↵ects, but also to test and corroborate the

existing calibration of Sanyal et al. (1996) in the face of possible inter-laboratory

analytical bias shown in Fig. 4.1.

4.1.3 Non-symbiont bearing foraminifera: ecology and existing

measurements

Symbiont-barren foraminifera make up a large proportion of global foraminiferal

assemblages. Although in oligotrophic low-latitude regions surface water assemblages

are dominated by symbiont-bearing Globigerinids, in higher latitudes, surface waters

are more likely to harbour symbiont-barren forms such as Globigerina bulloides or

Neogloboquadrina pachyderma sinistra. Furthermore, when approaching

palaeoceanographic questions, there are long intervals in Earth history where

symbiont-bearing foraminifera are rare even in low latitudes (such as from the late

Eocene to the Miocene, Wade, 2004). As such it is vital that we properly understand

the relationship between pH and �11B in symbiont-barren foraminifera, not only to
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improve our understanding of foraminiferal vital e↵ects, but to extend both the

geographical and temporal range of possible pH and pCO2 reconstructions.

Very few boron isotope measurements of modern symbiont-barren foraminifera have

been published to date. Hönisch et al. (2003) present boron isotope values in G.

bulloides (measured by N-TIMS) o↵set from the symbiont-bearing O. universa by -1.4

h, which they interpreted as being attributable to the absence of photosynthesis in

the foraminiferal microenvironment. Foster (2008) report a more pronounced o↵set of

⇠ 3 h between the symbiont-bearing species G. ruber and G. sacculifer and the

symbiont-barren Neogloboquadrina dutertrei. More recently, Yu et al. (2013)

documented �11B in N. pachyderma below that of ambient B(OH)4� ion. These data

are all consistent with the hypothesis that the presence of symbionts in the

microenvironment around the foraminifera elevates pH (and consequently �11B),

whereas in symbiont-barren species the microenvironment is acidified (and �11B

lowered) by the release of respired CO2 from the foraminifera (see section 1.4.2.3). It

follows that unless these e↵ects are accounted for, down-core records based on

symbiont-barren species will yield artificially low values for pH and artificially high

reconstructions of pCO2. However, to date no calibration of boron isotopes in

symbiont-barren foraminifera has been published that spans a pH range wide enough

to define pH sensitivity. This is largely because of the challenges involved their capture

and culture at a scale large enough for boron isotope analysis (B. Hönisch, pers.

comm.). While no attempt is made to culture these species here, core-top and

sediment trap data are combined to construct an in situ calibration of G. bulloides

over a broad range in �11BB(OH)�4
(⇠ 2 h). While the primary goal of constructing

such a calibration is to extend our understanding of foraminiferal vital e↵ects as

discussed above (section 4.1.1), it will also extend the possible range of

palaeo-reconstructions to higher latitude oceans, that have no symbiont-bearing

populations. In addition, comparison to measurements of �11B in other

symbiont-barren species (G. inflata and N. pachyderma) o↵ers insight into the degree

of disparity in �11B that may occur within the symbiont-barren foraminifera.
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4.2 Methods

4.2.1 Sampling

4.2.1.1 Tows and sediment traps

Plankton tows and sediment traps are valuable tools in decoding the relationships

between pH and �11B in planktic foraminifera, because unlike core-top samples they

consitute a ‘snapshot’ in time where pH and �11BB(OH)�4
are fully constrained. With

this in mind, foraminifera were towed using a MOCNESS apparatus (Wiebe et al.,

1985) on board the RV Tangaroa (Cruise TAN1106, 10th April - 1st May 2011), for

boron isotope analysis at NOCS. The MOCNESS apparatus allows for towing over

tightly constrained depth ranges, at sites where CTD casts were also taken to

determine hydrographic and carbonate system conditions. Unfortunately, the timing of

our cruise (late in the Austral autumn) meant that G. bulloides were not present in

su�cient abundance to incorporate into this study. However, O. universa and

Globoconella inflata were abundant, and these were analysed and are discussed here.

Towed foraminifera were separated from soft-bodied plankton using saturated salt

solution (Bé, 1959), before being rinsed thoroughly, dried at < 50 �C for 24-48 hours,

sieved and picked.

Towed samples were complemented by sediment trap samples from the Cariaco Basin

(both G. bulloides and O. universa, CAR22(Z), collected January 2007 and provided

by B. J. Marshall). Trap Z is positioned at 150m water depth. pH, temperature and

salinity data for the sediment trap site is interpolated from data from December 2006

and February 2007 downloadable from www.imars.usf.edu/CAR, and is given in Table

B.1.

4.2.1.2 Core-tops

Core-top site selection, as in Chapter 3, was intended to maximise the spread in

aqueous �11BB(OH)�4
, and to sample from multiple ocean basins to investigate any

possible regional e↵ects (as noted in Mg/Ca; Marr et al., 2011). Specimens of G.

bulloides were measured from globally distributed core-top sites from the core archives

at Tübingen, Germany and NIWA, New Zealand. Samples from NIWA were verified as

http://www.imars.usf.edu/CAR
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recent by way of 14C-dating (dates from Prebble et al., 2013), while from the Tübingen

repository only undisturbed multicored sediments containing Rose Bengal-stained

living benthic foraminifera were selected. The locations of core-top and sediment trap

sites are shown in Fig. 4.2 (see also Supplementary Table C.1). Samples were also

taken from a number of size fractions to examine any influence of test size on measured

�11B, as discussed by Hönisch and Hemming (2004), Henehan et al. (2013) and Ni

et al. (2007). As in Chapter 3, pH was estimated for core-top sites using surface water

oceanographic data from the GLODAP (Key et al., 2004), CARINA (Key et al., 2010)

and Takahashi et al. (2009) compendia (see Supplementary Table C.1). For better

comparability with other studies, in newer sites not previously studied for G. ruber we

use regional salinity-TAlk correlations (Table C.2) from Lee et al. (2006). Applying

these correlations, monthly-resolved estimates of salinity from Takahashi et al. (2009)

were converted to monthly TAlk estimates. Monthly temperature estimates were also

taken from Takahashi et al. (2009). Pre-industrial pCO2 at each core-top site was

estimated by applying monthly ocean-atmosphere �pCO2 from Takahashi et al. (2009)

sites (corrected for the post-industrial changes in flux with reference to Gloor et al.

2003) to a pre-industrial atmospheric pCO2 value. Where samples were 14C-dated, the

age-appropriate atmospheric pCO2 value was taken from Lüthi et al. (2008) and

references within. Where core-tops were not dated, we assume an average late

Holocene (< 4 kyr BP) value of 275 ppm. Combined with approximations of typical

local silicate and phosphate concentrations (from GLODAP/CARINA measurements),

monthly estimates of pH were calculated using CO2sys.m (van Heuven et al., 2011),

and the constants of Lueker et al. (2000), Lee et al. (2010) and Dickson (1990).

4.2.2 Analytical Methods

Analytical methods are as discussed in Chapter 2. Sediment trap and tow samples, in

agreement with other culturing studies (e.g. Russell et al., 2004, Henehan et al., 2013),

were subject to intensified oxidative cleaning (3 x 20-30 min treatments of 250 µl 1%

H2O2 + 0.1 M NH4OH4 at 80 �C) to account for the greater presence of organics. In

core-tops, oxidative cleaning was shorter (3 x 5 min) to minimise sample loss.

Uncertainty is calculated according to the external reproducibility of repeat analyses of

Japanese Geological Survey Porites coral standard (JCP; �11B= 24.3 ± 0.19 h) at the

University of Southampton, as described by Equation 2.3 (see also Fig. 2.9).
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Figure 4.2: Locations of core-top, tow and sediment trap samples used in this study.
Sites from which recent core-top samples were measured are marked as follows: open
circles = O. universa, grey diamonds = G. bulloides, black circles= both species. Open
squares mark the sites of tows, and the star marks site of the Cariaco basin sediment

trap.

Because B/Ca ratios in G. bulloides are typically very low (30-60 µmol/mol), sample

size typically ranged between 3-6 mg of CaCO3 (i.e., 300-500 tests of G. bulloides). In

O. universa B/Ca, while not as low as in G. bulloides, is still lower than in G. ruber

(55 - 75 µmol/mol vs. > 100 µmol/mol in G. ruber), and so typically >3 mg of sample

material was used. With these larger sample sizes, e�ciency of clay removal becomes

particularly pertinent. As discussed in Section 2.3, we monitor Al/Ca ratios to screen

for clay-contaminated samples (samples with Al/Ca ratios > 100 µmol/mol are

discounted). Perhaps partly because of the wide apertures that are characteristic of G.

bulloides (and thus propensity for contaminants to penetrate the innermost chambers),

we found clay contamination to be particularly problematic in this species. This study

is not alone in this observation: Marr (2009) observed higher levels of trace element

contamination in G. bulloides, while Barker et al. (2003) also reported G. bulloides to

be particularly di�cult to clean. In contrast, clay contamination was rarely observed
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in specimens of O. universa.

4.2.3 Presentation of calibrations: �11BCaCO3vs. �11BB(OH)�4
plots and

quantification of uncertainty.

As in Chapter 3, calibration data are described via linear regression between

�11BB(OH)�4
(at in situ conditions) and measured �11BCaCO3 . Again, calibration data

define straight lines with slopes reflecting the di↵erence between the �11B-pH

sensitivity of �11BB(OH)�4
and �11BCaCO3 . The slopes and intercepts of these lines are

independent of pK⇤
B (and hence salinity, temperature and pressure), meaning that tow,

sediment trap and core top calibration data can be readily compared without

complications from variable in situ temperatures and salinities. Previously, in Henehan

et al. (2013), York regressions (York, 1968) in Isoplot (Ludwig, 2003) were used to

calculate bounds of uncertainty on these sorts of calibrations, but this software is not

without its limitations (most notably incompatibility with Mac OS X), and so hereon

Monte Carlo approaches are performed. Similarly, though, this approach produces

calibrations that account for the uncertainty in individual datapoints’ X and Y

variables.

One thousand simulated datasets were created. For each data point, a value of

�11BB(OH)�4
was randomly generated from within a normal frequency distribution of

the uncertainty around quoted mean values. Similarly, random values for �11BCaCO3

were generated from within bounds of analytical uncertainty. For each simulated

dataset a linear regression was fitted, and slope and intercept calculated. The slope

and intercept of the calibration regression line may then be calculated as the mean of

these 1,000 calculated slopes and intercepts, and uncertainty on slope and intercept

calculated as 2� of the 1,000 values. Reassuringly, recalculation of the G. ruber

calibration from Henehan et al. (2013) in this way produced the same equation and

bounds of uncertainty as were calculated with a York regression (York, 1968). While

this is useful for comparing slopes and intercepts of calibrations, using only these 95%

confidence intervals on the slope and intercept to calculate uncertainty for individual

datapoints is inadequate: such an approach underestimates uncertainty in the

mid-range of the calibration, as illustrated in Fig. 4.3.
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Figure 4.3: Illustration of the limitations of a Monte Carlo-only approach used to con-
fidence intervals, using an example calibration dataset. 1,000 Monte Carlo simulations
within the bounds of uncertainty of observations can be used to calculate 1,000 values
for the slope m and the intercept c, two standard deviations of which may provide 2�
bounds of uncertainty for these values. However, when one uses only the maximum
and minimum CIs of slope and intercept to calculate uncertainty, as the shaded region
indicates, towards the centre of the calibrated range uncertainty reaches zero, which is

clearly inappropriate.

CIy = ±t(↵, df)Syx

s
1

n
+

(xi � x)2

⌃(x� x)2
(4.1)

To circumvent this issue, for each simulated dataset confidence intervals were

calculated via Equation 4.1 above, where CIy is the calculated uncertainty on y for a

given value of x, xi. In this equation, n is the number of points in the calibration, t is

the critical t-statistic, given an uncertainty level (↵) and df=n� 2. Syx is the standard

error on a predicted y-value for each x-value in a regression, x is the mean value of x in

the calibration dataset, and ⌃(x� x)2 is the sum of the squared deviations of given x

values from the regression line. Confidence intervals (both 1 and 2 �) on the

calibration line are then calculated as the average of 1000 Monte Carlo simulated
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Calibration Study Slope Probability of Steeper
Slope in G. bulloides

G. bulloides this study 1.01
O. universa Sanyal et al. (1996) 0.78 95%
Inorganic CaCO3 Sanyal et al. (2000) 0.78 93%
G. sacculifer Sanyal et al. (2001) 0.83 89%
G. ruber Henehan et al. (2013) 0.60 >99%
O. universa this study 0.80 91%

Table 4.1: Slopes (representing pH-sensitivities) in planktic foraminiferal and inor-
ganic carbonate calibrations, and the probability that the new G. bulloides demon-
strates a steeper slope (i.e. a greater pH-sensitivity) than these calibrations. Probabil-
ities are derived from comparison of slopes in 1,000 Monte Carlo simulations of each

calibration line.

confidence intervals. For ease of reproduction, polynomial fits (R2 >0.999) are plotted

to describe the generated bounds of uncertainty for calibration lines. Note that

confidence intervals derived via this method are inherently much more sensitive to n,

the number of constituent measurements, than those calculated via the alternative

standard Monte Carlo approach (i.e. 2� uncertainty on slopes of 1000 simulated linear

regressions). This is why 2� confidence intervals on the slope of Sanyal et al. (2000) in

Fig. 4.1 appear unusually large.

4.3 Results

4.3.1 G. bulloides Calibration

The results of this builloides calibration are given in Table 4.2 and are plotted in

Figure 4.4. The data record lower �11B than that of ambient B(OH)4� ion (i.e. they

plot below the 1:1 line on Fig. 4.4). In addition, the slope of these data is '1 (1.01 ±

0.29, 2�), which suggests that G. bulloides has a pH sensitivity permissively equal to

that of aqueous B(OH)4� ion. Although the residual scatter in this calibration

(discussed later) produces large bounds of uncertainty on the calculated slope, the

slope of this G. bulloides calibration, is, to within 89% confidence, steeper than any

previous planktic foraminiferal or inorganic carbonate calibration (see Table 4.1). This

is in contrast to all existing planktic foraminifera calibrations, whose slopes are within

uncertainty of the inorganic calibration of (Sanyal et al., 2000, see Henehan et al.

(2013)), and less than 1.
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Figure 4.4: New calibration of G. bulloides, with shaded regions defining 1� (heavily
shaded) and 2� (lightly shaded) confidence intervals (calculated as per section 4.2.3).
X-error bars for core-top samples are 2 standard deviations of intra-annual variabil-
ity in calculated monthly �11BB(OH)�4

, while for sediment trap samples it reflects the

range of �11BB(OH)�4
between Dec-Feb 2007 (see Table B.1). Y-error is the analytical

reproducibility as calculated by Equation 2.3.
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MH70 F111 Core-top 355-400 -48.95 174.98 9.08 34.33 8.191 0.003 8.794 15.86 0.21 17.49 0.41 -1.63 8.008 -0.183
MH121 MC577-17B Core-top 355-400 45.57 -17.40 15.32 35.70 8.188 0.002 8.709 16.65 0.58 18.34 0.62 -1.69 8.019 -0.170
MH68 F111 Core-top 250-300 -48.95 174.98 9.08 34.33 8.191 0.003 8.794 14.90 0.33 17.49 0.41 -2.59 7.863 -0.328
MH108 CAR22(Z)6 Sed. Trap 250-300 10.50 -64.66 24.17 36.70 8.066 0.018 8.597 16.23 0.35 18.21 0.11 -1.98 7.858 -0.208
MH120 MC577-17B Core-top 250-300 45.57 -17.40 15.32 35.70 8.188 0.002 8.709 16.43 0.58 18.34 0.62 -1.91 7.993 -0.195
MH25 MC436 Core-top 300-355 39.80 -21.06 18.40 36.06 8.201 0.017 8.670 16.37 0.40 18.89 0.51 -2.52 7.948 -0.253
MH61 MC655 Core-top 300-355 38.42 5.40 23.23 37.38 8.161 0.010 8.605 17.36 0.31 19.22 0.25 -1.87 7.992 -0.169
MH69 F111 Core-top 300-355 -48.95 174.98 9.08 34.33 8.191 0.003 8.794 15.04 0.21 17.49 0.41 -2.45 7.887 -0.304
MH102 TAN1106/38
‘flattened’

Core-top 300-355 -49.69 165.07 9.78 34.49 8.186 0.003 8.783 15.16 0.26 17.51 0.28 -2.36 7.894 -0.292

MH103 TAN1106/38
‘kummerform’

Core-top 300-355 -49.69 165.07 9.78 34.49 8.186 0.003 8.783 15.19 0.27 17.51 0.28 -2.33 7.899 -0.287

MH107 CAR22(Z)6 Sed. Trap 300-355 10.50 -64.66 24.17 36.70 8.066 0.018 8.597 16.84 0.50 18.21 0.11 -1.37 7.929 -0.137
MH109 ODP1172C Core-top 300-355 -43.96 149.93 13.72 35.02 8.196 0.004 8.732 16.49 0.23 18.14 0.47 -1.65 8.024 -0.173
MH117 MC577-17B Core-top 300-355 45.57 -17.40 15.32 35.70 8.188 0.002 8.709 15.48 0.24 18.34 0.62 -2.86 7.869 -0.320
MH125 IODP1313 Core-top 300-355 41.00 -32.96 18.50 36.03 8.182 0.008 8.668 16.96 0.34 18.73 0.67 -1.77 8.013 -0.169
MH126 IODP1308 Core-top 300-355 49.88 -24.24 13.22 35.41 8.183 0.001 8.736 15.52 0.50 17.98 0.50 -2.46 7.903 -0.280
MH127 ODP980 Core-top 300-355 55.49 -14.70 11.71 35.36 8.206 0.016 8.755 16.32 0.72 18.02 0.59 -1.71 8.026 -0.180
MH148 ODP980 Core-top 250-300 55.49 -14.70 11.71 35.36 8.206 0.016 8.755 16.24 0.62 18.02 0.59 -1.78 8.018 -0.188
MH147 IODP1313 Core-top 250-300 41.00 -32.96 18.50 36.03 8.182 0.008 8.668 17.05 0.35 18.73 0.67 -1.67 8.023 -0.159
MH153 IODP1308 Core-top 250-300 49.88 -24.24 13.22 35.41 8.183 0.001 8.736 15.38 0.45 17.98 0.50 -2.60 7.882 -0.301
MH154 IODP1308 Core-top 355-400 49.88 -24.24 13.22 35.41 8.183 0.001 8.736 15.04 0.44 17.98 0.50 -2.94 7.828 -0.355

Table 4.2: Results of Boron Isotope analyses of G. bulloides from core-tops and sediment traps. Uncertainty on pH in core-tops is 2 standard
deviations of twelve monthly reconstructions, while for CAR22(Z) it represents the range in pH between December and February 2006 from IMAR
(see Table B.1). Uncertainty on measured �11B is from Equation 2.3. ��11B is the di↵erence between recorded �11BCaCO3 and that of in situ
�11BB(OH)�4

. pH�11B is the pH back-calculated from foraminiferal �11B measurements, and �pH�11B is the di↵erence between this and ambient pH.

All carbonate system and pK⇤

B calculations use CO2sys.m (van Heuven et al., 2011) and the constants of Dickson (1990), Lueker et al. (2000) and
Lee et al. (2010).
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4.3.2 Other Symbiont-barren Species

New data from G. inflata and N. pachyderma from coretops and tows are plotted in

Fig. 4.5, along with published measurements from N. pachyderma (Yu et al., 2013)

andN. dutertrei (Foster, 2008) for comparison. Measurements of N. pachyderma and

most of measurements of G. inflata analysed via MC-ICPMS at NOCS plot within

uncertainty of the G. bulloides calibration line. However, both the N. pachyderma

data from Yu et al. (2013) and some G. inflata datapoints plot lower than the G.

bulloides calibration line.
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Figure 4.5: New MC-ICPMS calibration of G. bulloides, compared with new mea-
surements of N. pachyderma (core-top, this study) and G. inflata (MOCNESS tows
and core-top, this study). Published values for N. pachyderma (Yu et al., 2013) and N.
dutertrei(Foster, 2008) are also plotted for comparison. X-error bars for MC-ICPMS
data (from this study) are either 2 standard deviations of intra-annual variability in cal-
culated monthly �11BB(OH)�4

(core-tops, see section 4.2.1.2), the range of �11BB(OH)�4
between Dec-Feb 2007 (sediment traps, see Table B.1) or a conservative estimate of
the uncertainty in �11BB(OH)�4

between tow depths (G. inflata tows). X-error in the

data of Yu et al. (2013) and Foster (2008) are as quoted in these studies. Y-error is the
analytical reproducibility as calculated by Equation 2.3 for new data, and as quoted in

relevant papers for the published data shown.
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TAN1106/24-N8
Clean Test 1

Tow 300-355 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 14.90 0.35 16.93 0.15 -2.03 7.814 -0.273

TAN1106/24-N8
Clean Test 2

Tow 300-355 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 15.29 0.39 16.93 0.15 -1.64 7.877 -0.210

TAN1106/24-N8
Clean Test 3

Tow 300-355 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 14.85 0.88 16.93 0.15 -2.08 7.805 -0.282

MH80 TAN1106/24-
N8

Tow 250-300 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 15.10 0.38 16.93 0.15 -1.83 7.848 -0.239

MH82 TAN1106/24-
N8

Tow 300-355 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 14.77 0.22 16.93 0.15 -2.16 7.791 -0.296

MH84 TAN1106/24-
N8

Tow 355-400 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 14.27 0.20 16.93 0.15 -2.66 7.694 -0.393

MH86 TAN1106/24-
N8

Tow 400-455 -47.98 165.77 12.51 34.70 8.095 0.005 8.746 14.42 0.19 16.93 0.15 -2.50 7.726 -0.361

MH95 TAN1106/50-
N8

Tow 300-355 -51.56 164.68 9.01 34.39 8.063 0.004 8.789 12.49 0.14 16.21 0.15 -3.80 6.975 -1.082

MH93 TAN1106/50-
N8

Tow 355-400 -51.56 164.68 9.01 34.39 8.063 0.004 8.789 12.77 0.17 16.21 0.15 -3.51 7.213 -0.844

MH99 TAN1106/40-
N9

Tow 300-355 -49.43 165.26 11.09 34.62 8.071 0.008 8.766 14.06 0.25 16.61 0.15 -2.55 7.667 -0.404

MH111 ODP1172C Core-top 300-355 -43.96 149.93 13.72 35.02 8.196 0.004 8.732 14.34 0.18 18.14 0.47 -3.81 7.694 -0.503
MH129 MC439 Core-top 355-400 59.46 -20.03 10.09 35.23 8.200 0.019 8.776 14.70 0.19 17.74 0.66 -3.04 7.809 -0.391
MH73 KN7812-6BC Core-top 250-300 -63.29 174.78 1.36 34.03 8.184 0.008 8.899 13.85 0.21 16.44 0.15 -2.59 7.747 -0.437

Table 4.3: Results of Boron Isotope analyses of G. inflata and N. pachyderma (Sample MH73 KN7812-6BC) from core-tops and tow. Uncertainty
on pH in core-tops is 2 standard deviations of twelve monthly reconstructions, while for TAN1106 it represents the range in pH within the depth
sampled by the MOCNESS net. Uncertainty on measured �11B is from Equation 2.3. ��11B is the di↵erence between recorded �11BCaCO3 and that
of in situ �11BB(OH)�4

. pH�11B is the pH back-calculated from foraminiferal �11B measurements, and �pH�11B is the di↵erence between this and

ambient pH. All carbonate system and pK⇤

B calculations use CO2sys.m (van Heuven et al., 2011) and the constants of Dickson (1990), Lueker et al.
(2000) and Lee et al. (2010).
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4.3.3 O. universa calibration

Calibration data for O. universa are given in Table 4.4 and are plotted in Figure 4.6.

The data record lower �11B than that of ambient B(OH)4� ion, and plot below the 1:1

line. Their slope is almost identical to that observed in Sanyal et al. (1996) (0.80 ±

0.11 vs. 0.78 ± 0.09), meaning that wild O. universa display a pH sensitivity equal to

those from cultures measured by Sanyal et al. (1996), but are o↵set in absolute �11B

from the culture calibration (by ⇠ 3.3 h). However, this MC-ICPMS calibration

excludes one data point, shown in parentheses in Fig. 4.6: a towed sample of O.

universa from the Gulf of Aqaba that recorded very di↵erent �11B signals. This sample

had a �11B that was elevated relative to ambient B(OH)4�, as current understanding

of microenvironment alteration would predict (see Zeebe et al., 2003). This datapoint

is discussed further in section 4.4.2.2.
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Figure 4.6: New calibration of O. universa, plotted with uncertainty (shaded regions)
calculated as 2� of 1,000 Monte Carlo simulations (see Section 4.2.3), with shaded re-
gions defining 1� (heavily shaded) and 2� (lightly shaded) confidence intervals. X-error
bars for core-top samples are 2 standard deviations of intra-annual variability in cal-
culated monthly �11BB(OH)�4

, while for sediment trap samples it reflects the range

of �11BB(OH)�4
between Dec-Feb 2007, and for tow samples it reflects CTD-derived

hydrographic variability within the depth range of the tow. Y-error is the analyti-
cal reproducibility as calculated by Equation 2.2. Note, this calibration excludes one

datapoint towed from Eilat, shown in parentheses: see Section 4.4.2.2.
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MH104 J50 Coretop 355-500 -36.67 170.65 17.2 35.49 8.189 0.009 8.687 17.50 0.33 18.59 0.45 -1.09 8.087 -0.102
MH113 ODP1172C Core-top 300-355 -43.96 149.93 13.7 35.02 8.196 0.004 8.732 16.17 0.20 18.14 0.47 -1.97 7.985 -0.212
MH114 CAR22(Z) Sed. Trap >600 10.50 -64.66 24.2 36.70 8.076 0.035 8.598 16.82 0.20 18.21 0.10 -1.39 7.927 -0.149
MH115 CAR22(Z) Sed. Trap 500-600 10.50 -64.66 24.2 36.70 8.076 0.035 8.598 16.62 0.19 18.21 0.10 -1.59 7.905 -0.171
MH119 MC577-17B Core-top 300-355 45.57 -17.40 15.3 35.70 8.188 0.002 8.709 16.97 0.21 18.34 0.62 -1.36 8.055 -0.133
MH128 MC439 Core-top 355-400 59.46 -20.03 10.1 35.23 8.200 0.019 8.776 16.29 0.18 17.74 0.66 -1.45 8.044 -0.156
MH130 MC497 Core-top >355 23.53 63.31 26.9 36.37 8.152 0.020 8.568 18.04 0.27 19.57 0.45 -1.53 8.020 -0.131
MH83 TAN1106/24-N8 Tow 300-355 -47.91 165.79 12.5 34.70 8.087 0.010 8.746 15.98 0.43 16.93 0.15 -0.94 7.975 -0.112
MH85 TAN1106/24-N8 Tow 355-400 -47.91 165.79 12.5 34.70 8.087 0.010 8.746 15.84 0.40 16.93 0.15 -1.08 7.957 -0.130
MH87 TAN1106/24-N8 Tow 400-450 -47.91 165.79 12.5 34.70 8.087 0.010 8.746 16.08 0.23 16.93 0.15 -0.85 7.987 -0.100
MH88 TAN1106/38 Core-top 300-355 -49.69 165.07 9.8 34.49 8.186 0.003 8.784 15.99 0.19 17.51 0.28 -1.52 8.015 -0.171
MH90 TAN1106/50-N8 Tow >450 -51.71 164.56 9.0 34.41 8.056 0.010 8.789 14.98 0.15 16.28 0.15 -1.30 7.871 -0.185
MH92 TAN1106/50-N8 Tow 355-400 -51.71 164.56 9.0 34.41 8.056 0.010 8.789 15.19 0.18 16.28 0.15 -1.09 7.905 -0.151
MH94 TAN1106/50-N8 Tow 300-355 -51.71 164.56 9.0 34.41 8.056 0.010 8.789 15.15 0.17 16.28 0.15 -1.13 7.899 -0.157
MH98 TAN1106/40-N9 Tow 300-355 -49.72 165.21 11.0 34.61 8.071 0.020 8.766 15.65 0.28 16.61 0.15 -0.95 7.951 -0.120

MH76 Eilat Tow >500 29.50 34.92 23 40.40 8.116 0.002 8.598 19.47 0.31 18.78 0.24 0.70 8.174 0.058

Table 4.4: Results of Boron Isotope analyses of O. universa from tows, core-tops and sediment traps. Uncertainty on pH in core-tops is 2 standard
deviations of twelve monthly reconstructions, while for TAN1106 tows it reflects the range in pH in the depth range towed and for CAR22(Z) it
represents the range in pH between December and February 2006 from IMAR. Uncertainty on measured �11B is from Equation 2.3. ��11B is the
di↵erence between recorded �11BCaCO3 and that of in situ �11BB(OH)�4

. pH�11B is the pH backcalculated from foraminiferal �11B measurements,

and �pH�11B is the di↵erence between this and ambient pH. All carbonate system and pK⇤

Bcalculations use CO2sys.m (van Heuven et al., 2011)
and the constants of Dickson (1990), Lueker et al. (2000) and Lee et al. (2010).
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4.3.4 Size e↵ects

There is no compelling evidence for size-related change in the recorded �11B of either

G. bulloides (Fig. 4.7) or O. universa (Fig. 4.8). While there is a slight trend towards

more negative ��11B in larger specimens of O. universa, this is more likely a site

specific di↵erence: within any one site all size fractions give the same value (within

analytical uncertainty). In contrast, towed samples of G. inflata appear to show a

trend in �11B (and B/Ca, another purported carbonate system proxy; see Chapter 5)

that suggests decreasing microenvironment pH with size (see Fig. 4.9).
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Figure 4.7: ��11B (i.e. deviation of �11BCaCO3 from �11BB(OH)�4
) with size fraction

in G. bulloides from Sites CAR 22(Z) (Cariaco Basin sediment trap), F111 (Southern
Ocean core-top), ODP 980, IODP 1308, IODP 1313 and MC577-17b (North Atlantic
core-tops). Y-error is the analytical reproducibility as calculated by Equation 2.3.
While there is often considerable scatter in recorded �11B between size fractions, there
is no consistent size-related pattern. Indeed, a linear fit through the whole dataset
(black line) gives a slope of '0, suggesting that there is no size e↵ect on �11B in G.

bulloides.
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Figure 4.8: No unequivocal size-related changes in �11B were observed in O. universa.
While there is a slight negative trend in ��11B in larger samples, this may be driven by
site-specific factors; since within each individual site all size fractions are within uncer-
tainty of each other, size fractions are, at best, small. Samples are from Southern Ocean
tows (TAN1106/24 and TAN1106/50) and Cariaco Basin sediment traps (CAR22(z)).

Y-error is the analytical reproducibility as calculated by Equation 2.3.

4.4 Discussion

4.4.1 G. bulloides and symbiont-barren foraminifera

4.4.1.1 Lower-than-ambient �11B in G. bulloides, and other

symbiont-barren species.

As shown in Fig. 4.4, G. bulloides records �11B values that are ⇠ 2.1h lower than in

situ �11BB(OH)�4
, which, accounting for the pK⇤

B of each sample, translates to recorded

pH values that are on average 0.23 pH units lower than ambient seawater pH. This is

permissively in accordance with modelled values of �11B for O. universa in the absence

of photosynthesis (Zeebe et al., 2003), and is roughly midway between the observations

of pH reduction at the test boundary in the dark of ⇠ 0.1 pH (G. sacculifer ; Jørgensen

et al., 1985) and ⇠ 0.35 pH (O. universa; Rink et al., 1998). Thus these �11B data are

consistent with the release of respired CO2 lowering microenvironment pH. This is
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Figure 4.9: Size fractions of G. inflata from tow TAN1106/24 (-47�58.36’,165�46.83’)
in the Southern Ocean. Although only tested in one site, �11B and B/Ca ratios seem to
suggest that G. inflata records progressively lower pH with size (although see Chapter
5 for discussion of the complications in interpreting B/Ca). Y-error is the analyti-
cal reproducibility as calculated by Equation 2.3 for �11B, and 5% for trace element

analysis.

corroborated by the observed patterns in other symbiont-barren species (shown in Fig.

4.5), that all record similarly lowered �11B relative to ambient borate, even if they do

not always fall on the G. bulloides calibration line. As Foster (2008) notes, there is

considerable scatter in measurements of N. dutertrei, linked to an uncertainty with

regards its depth habitat, but nonetheless each of these points is within uncertainty of

the G. bulloides calibration line. In the case of the N. pachyderma data of Yu et al.

(2013), their calibration typically underestimates pCO2 in reconstructions by 20 - 45

ppm, which might suggest that carbonate system characterisation for calibration

samples (using somewhat sparse GLODAP hydrographic data from Key et al., 2004,

rather than the approaches used here) may be imperfect, and that in situ �11BB(OH)�4

may in fact have been lower.

There is, however, some considerable residual scatter evident in measurements of G.

bulloides. There are numerous possible causes for this, namely: a) contamination
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issues, b) inappropriate characterisation of ambient �11BB(OH)�4
, and/or c)

cryptospecies variability. Remnant contaminants may cause scatter in �11B

measurements via the introduction of isotopically divergent boron. For example, boron

adsorbed onto clays is typically isotopically light (Palmer et al., 1987), and ine�cient

clay cleaning may result in anomalously light �11B measurements. G. bulloides was the

species found to be most commonly a↵ected by clay contamination, perhaps as a result

of its wide aperture (as also highlighted by Barker et al., 2003). Furthermore, large

and apparently non-systematic scatter is seen even between size fractions at the same

site, which would perhaps favour a contamination model rather than any biological

explanation. However, the residuals from the calibration line do not correlate

significantly with Al/Ca (R2=<0.01), Mn/Ca (R2=0.07), U/Ca (R2=0.14), Ba/Ca

(R2=0.01), Cd/Ca (R2=0.03) or Nd/Ca (R2=0.12), as one might expect if any of these

more common contaminants might be behind the observed scatter. It is possible that

contamination by coccolith calcite might produce some variability in �11B without

being detectable in these trace element values: Martin (2001) examined G. bulloides

under SEM and found coccoliths often fused and incorporated into apparently

secondary diagenetic calcite coatings. That said, mass balance considerations would

require ⇠ 2.5% of the mass of G. bulloides sample material to be derived from

coccolithophore calcite for contamination to be detectable above analytical uncertainty

(Henehan, unpublished data), which seems perhaps unfeasible. Again, more in-depth

analysis and SEM study would be desirable, but were not possible within the temporal

constraints of this PhD project.

Secondly, it is possible that the characterisation of mean-annual surface �11BB(OH)�4

used here may result in some scatter in G. bulloides data. G. bulloides is a major

constituent of seasonal or transient blooms, which may often be driven by periodic

upwelling or deep mixing. As a consequence, G. bulloides may not always reflect mean

annual pH (and thus �11BB(OH)�4
) signals, and so comparison to mean annual

�11BB(OH)�4
may be inappropriate. If this were to be the case, however, one might

expect the dataset to be uniformly shifted towards the negative bounds of uncertainty

in �11BB(OH)�4
(since upwelling waters will typically be of lower pH), rather than being

scattered in either direction along the x-axis. Alternatively, but similarly, some of the

scatter seen in G. bulloides may be as a result of uncertainty in the depth habitat of

G. bulloides. Although the majority of studies report G. bulloides as mainly living in
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the upper ⇠ 30m (e.g. Hemleben et al., 1989, Kahn, 1981), they may also be found

(albeit less frequently) in waters of >60m depth (e.g. Schiebel et al., 1997). Thus

comparison to surface water �11BB(OH)�4
may be inappropriate. That said, given that

much of the intra-annual variability in �11BB(OH)�4
in surface waters at these sites is

attributable to changes in the depth of mixing, much of the variability in �11BB(OH)�4

in the top 50-100 m should fall within the bounds of uncertainty in estimated

�11BB(OH)�4
. Furthermore, given that there is often considerable scatter even between

di↵erent size-fractions from the same site (see Fig. 4.7 and Section 4.4.1.3), for this

scatter to be explained by depth habit it would require not only depth-separation of

size fractions, but also variability in size-depth habit relationships between sites.

Thirdly, it is possible that di↵ering proportions of cryptospecies at di↵erent sites and

in di↵erent size fractions may be responsible for some degree of the observed scatter.

G. bulloides is known to encompass up to seven cryptic species (Darling and Wade,

2008, and references within), and it is possible that these cryptic species may record

di↵erent �11B signals (perhaps as a result of di↵ering metabolic rates, seasonality,

etc.). Bemis et al. (1998) and Spero and Lea (1996) report anomalous �18O values in

samples of G. bulloides that possessed distinctly more massive tests and an apparent

gametogenic crust, that might conceivably represent a cryptic species, and might also

manifest itself in �11B signals. At core-top site TAN1106/38, attempts were made to

test for �11B di↵erences between variant morphotypes of G. bulloides, as shown in Fig.

4.10, revealing no observable di↵erence between ‘flattened’ or ‘kummerform’ types (see

Table 4.2). Unfortunately comparisons such as these are often restricted by the

prohibitive sample size requirements of G. bulloides (>300 tests of 300-355 µm size per

measurement) for the generation of data of acceptable reproducibility, and as such no

further tests were carried out. Certainly further testing would be beneficial in assessing

the possibility of cryptospecies di↵erences.

4.4.1.2 pH-sensitivity in G. bulloides

The slope of the new calibration for G. bulloides (m=1.01±0.29, 2�) is greater than

any of the previous calibrations constructed for planktic foraminifera (see Table 3.1),

and is e↵ectively equal to 1 (and therefore the pH-sensitivity of aqueous B(OH)4�; see

section 1.3.3.3). This implies that, for G. bulloides, recorded pH is consistently o↵set
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A B C

Figure 4.10: G. bulloides is a very morphologically variable species. Some examples
of this variability are shown below: A, a more holotypic G. bulloides, B, a ‘flattened’,
more squared morphotype, and C a ‘kummerform’ variant, with a diminutive final

chamber. Images modified after Bandy (1972).

towards negative values compared with ambient pH. Such a pattern is in agreement

with the modelled results of Zeebe et al. (2003), and as such constitutes further

support for our current understanding of microenvironment alteration. Although the

aforementioned scatter in G. bulloides data means that the bounds of uncertainty on

this slope are large, it is clear from Table 4.1 that the weight of probability suggests

that the observed slope for G. bulloides is steeper than any analogous calibration in

symbiont-bearing species: there is only an 11% likelihood that the slope of the G.

bulloides calibration equals that of G. sacculifer (Sanyal et al., 2001), a 9% likelihood

that it equals that of O. universa (this study), and <1% likelihood that it equals that

of G. ruber (Henehan et al., 2013). Moreover, in the context of other symbiont-barren

species, it is more di�cult to reconcile a shallower slope: if G. bulloides were to exhibit

a pH sensitivity < 1, it would necessitate some mechanism through which an

increasing o↵set between G. bulloides and other symbiont-barren species could arise at

lower ambient pH (despite a hypothetically comparable vital e↵ect, driven by the same

factors). Nonetheless, although the observed higher pH-sensitivity calculated for G.

bulloides seems probabilistically robust, culturing and tow collection of G. bulloides

would be beneficial and would permit greater confidence in this calibration.

It is significant that G. bulloides, the only symbiont-barren species for which

pH-sensitivity has been investigated to date (Yu et al. 2013 assume a pH-sensitivity

equal to aqueous B(OH)4� ion), displays the steepest calibration slope observed to
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date, and pH-sensitivity permissively equal to that of aqueous B(OH)4� ion. This

observation implies, firstly, that earlier assertions of some universal boron isotope

fractionation factor inherent in foraminiferal biomineralisation (Hönisch et al., 2007,

Katz et al., 2010) were premature, and consequently to apply any ‘empirical

sensitivity’ to downcore records (as in Raitzsch and Hönisch, 2013) is inappropriate. It

also suggests that internal pH elevation, as advocated by Rollion-Bard and Erez (2010)

as an explanation for foraminiferal vital e↵ects, does not have a noticeable e↵ect on

planktic foraminiferal �11B.

Another implication of this finding in symbiont-barren foraminifera is that the

weaker-than-predicted pH sensitivity seen elsewhere in symbiont-bearing planktic

foraminifera (Sanyal et al., 1996, 2001, Hönisch et al., 2009, Henehan et al., 2013, and

O. universa, this study), if not a result of some inorganic fractionation, is likely a

product of symbiont photosynthesis. While further modelling work, building on the

work of Zeebe et al. (1999a, 2003), would be required to adequately test this

hypothesis, one line of investigation to pursue might include changes in photosynthetic

rate in dinoflagellate symbionts under low pH. For example, Brading et al. (2011)

found some species of Symbiodinium dinoflagellates (found in corals and some benthic

foraminifera, and a sister group of symbionts found in planktic foraminifera - see Spero

1987, Shaked and Vargas 2006) grow more rapidly under higher aqueous CO2

([CO2]aq). This is likely because of a preference for [CO2]aq uptake over HCO�
3

(Colman et al., 2002, Dason et al., 2004). Given the pH-dependence of DIC speciation

in seawater, the abundance of [CO2]aq increases at lowered pH (Zeebe and

Wolf-Gladrow, 2001, and references within). Consequently, lowering of ambient

seawater pH may be mitigated in the microenvironments of symbiont-bearing

foraminifera by photosynthetic symbionts more readily taking up DIC.

4.4.1.3 Size fraction e↵ects in symbiont-barren species

The sizeable non-systematic variation in �11B between size fractions of G. bulloides is

unsettling, and is di�cult to explain. It is, however, perhaps not surprising, as this

behaviour appears not to be unique to �11B. Bemis et al. (1998) found that

ontogenetic e↵ects in �18O produced in culture were not reproduced in towed samples

from the Northeast Pacific (Kahn, 1981). Absolute �13C disequilibrium and the
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magnitude of size-fraction e↵ects in G. bulloides have also been shown to di↵er

geographically (specifically between the Chatham Rise, southwest Pacific, and the

Southern California Bight Spero and Lea, 1996). In addition, trace element

concentrations between and within tests and size fractions of G. bulloides are

commonly variable (Anand and Elderfield, 2005, Marr, 2009). Most recently, Jonkers

et al. (2013) report variable size fraction di↵erences in �13C and �18O of G. bulloides

that are much less consistent than those seen in N. pachyderma. These inconsistencies

may be linked to variability in the proportion of metabolic carbon that is

reincorporated during calcification (Spero and Lea, 1996), the e↵ects of which may be

more strongly recorded in �11B signals in G. bulloides because of a lack of pH bu↵ering

a↵orded in other species by the presence of symbionts.

As ever, interpretation of size fractions in core-top samples is limited by the nature of

the material: core-tops represent an integrated signal of hundreds (if not thousands) of

years, and of all depths in the water column. Therefore seasonality, depth preferences,

hydrographic and biogeographic fluctuations, and indeed sampling bias cloud the any

underlying signals of metabolism, etc. In addition, individuals above ⇠150 µm in

diameter will all have undergone gametogenesis (Peeters et al., 2002), which must

imply that individuals of di↵ering sizes were subject to di↵erent conditions during

their life cycle (e.g. food supply) to have undergone gametogenesis at di↵erent sizes.

Recent evidence suggests, that shell size in G. bulloides may vary seasonally (Jonkers

et al., 2013). As such, size fraction tests in core-tops and sediment traps provide a

more holistic signal that also indirectly incorporates local environmental signals

through their e↵ect on test size. While core-top size fraction tests are useful in

grounding palaeo-application studies, which use similarly time-integrated material, size

fraction tests in tow material provide a ‘snapshot’ signal: an insight into variation in

�11B caused only by intrinsic biological, ontogenetic changes, within fixed,

well-characterised environmental conditions. Consequently, these tests are more helpful

for understanding issues of foraminiferal physiology.

Our tow data from G. inflata suggest that larger individuals record a test-averaged

microenvironmental pH that is ⇠0.12 pH lower than smaller individuals. It is unclear

whether this is a trend towards increased respiration rates in larger individuals

(consistent with their increase in mass; Zeuthen, 1953), or that those with higher

metabolic rates when smaller (and thus respiration rates) had gone on to grow larger
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(consistent with Schmidt et al., 2008). Amputation (as per Bemis et al., 1998, for

example), or point-measurement via laser ablation ICPMS (LA-ICPMS, as per e.g.

Anand and Elderfield, 2005, Marr, 2009), could prove useful in determining this. That

said, for the observed di↵erences to be caused by higher rates of respiration early in

the ontogeny of those individuals that went on to grow larger, mass balance concerns

would require drastically, and perhaps unfeasibly, divergent �11B in early chambers. It

seems more probable, therefore, that the patterns observed are as a result of an

increasingly acidified microenvironments as biomass (and therefore respiration rates)

increase. This would agree with the models of Zeebe et al. (2003), but makes the lack

of a comparable pattern in G. bulloides perhaps more puzzling.

4.4.2 Vital e↵ects in O. universa

4.4.2.1 pH sensitivity in O. universa: comparison with Sanyal et al.

(1996)

The slope (i.e. the pH sensitivity) of the new �11B calibration for O. universa

presented here is very well constrained, thanks in part to the broad biogeographic (and

thus in situ �11BB(OH)�4
) range of O. universa, and in part to less scatter than is seen

for G. bulloides. The slope of the new calibration is identical to that observed by

Sanyal et al. (1996) in cultured O. universa, and corroborates their finding that pH

sensitivity in O. universa is lower than that of aqueous B(OH)4�. The new calibration

is, however, o↵set from their previous calibration by approximately - 3.3 h, and lies

below the 1:1 line. Although this is unexpected, there seems little cause query

analytical procedures- as shown in Chapter 2, measurements of absolute �11B in boric

acid standards, reference carbonates and foraminifera measured at the NOCS are

reliable, comparing favourably with other laboratories and agreeing with certified

values where available. Instead it appears that Sanyal et al.’s (1996, 2000, 2001) data

are subject to a laboratory-specific bias, presumably linked to analytical di↵erences.

As previously mentioned (section 4.1.2), core-top �11B measurements of G. sacculifer

measured by MC-ICPMS are on average 3.32 h lighter than those produced at

Stonybrook via NTIMS: the same degree to which this new MC-ICPMS calibration of

O. universa is o↵set from that of Sanyal et al. (1996)1. Correcting for this

interlaboratory o↵set brings the two calibrations into close agreement (see Fig 4.11),
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and supports the observation that the O. universa data of Sanyal et al. (1996) are

lighter in �11B than inorganic precipitates of Sanyal et al. (2000).
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Figure 4.11: Illustration of the good agreement between the O. universa calibration
of Sanyal et al. (1996) and this calibration once an interlaboratory o↵set is subtracted.
For each calibration, uncertainty (shaded regions) is calculated as per Section 4.2.3,
with shaded regions defining 1� (heavily shaded) and 2� (lightly shaded) confidence
intervals. X- and Y-error bars for Sanyal et al. calibrations are derived from quoted
uncertainties. Error bars on the new MC-ICPMS calibration of O. universa are as in

Fig. 4.6.

That this new calibration for O. universa displays a pH-sensitivity that is steeper than

G. ruber (to >99% confidence) may also be support for microenvironment e↵ects being

involved in determining pH-sensitivity (as discussed in section 4.4.1.2). If

microenvironment pH is bu↵ered by symbiont photosynthesis, dampening �11B

response to reduced seawater pH, it would be expected that symbiont-bearing species

that live at greater water depths (and lower light levels) would see weaker bu↵ering

e↵ects from symbiont photosynthesis, and thus a greater sensitivity in �11B to ambient

pH changes. Similarly, depth preference in G. sacculifer is also deeper than in G. ruber

(Hemleben et al., 1989), which might explain its observed higher pH-sensitivity.
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However, �11B in G. sacculifer is typically higher than in O. universa, which would

reflect a stronger e↵ect of symbiont photosynthesis, despite a similar pH-sensitivity in

both species.

4.4.2.2 Variable vital e↵ects in O. universa

While the di↵erences between the O. universa calibration of Sanyal et al. (1996) and

the one presented here might be explained by analytical di↵erences, there remains an

inconsistency within the MC-ICPMS data presented here. As can be seen in Table 4.4,

one measurement from O. universa towed from the Gulf of Aqaba (Eilat) is

considerably o↵set from other calibration data (by ⇠+2.3h). This datapoint shows no

indication from trace element analysis for contamination, and �11B analysis showed no

sign of irregularities, and therefore it must be concluded that (although only one

datapoint) the signal is real. Indeed, this datapoint records values more similar to

those expected from models of vital e↵ects in O. universa (Zeebe et al., 2003).

One possible cause for the deviation seen in tow material from this site is the

unusually high salinity levels (> 40) seen in the Gulf of Aqaba. Yet, data from other

core-top sites show no correlation between salinity and deviation from predicted

�11BB(OH)�4
within a range of salinity of 34.4 and 36.7 (Fig. 4.12), and as such this

would seem unlikely.

Another possible explanation for the observed patterns in �11B is that O. universa

from higher-productivity, eutrophic waters may have higher respiration rates (perhaps

as a result of greater food supply), that outweigh the bu↵ering e↵ect of photosynthetic

symbionts. This might be supported by a higher observed occurence of twin-orb O.

universa in some of the higher-productivity higher-latitude waters sampled here, as the

growth of twin orbs is favoured with high feeding rates (Bijma et al., 1992). In

contrast, in Eilat, no twin-orbed O. universa were observed. Such a hypothesis is

worthy of further testing in culture, although it should be noted that feeding rate was

shown not to alter �13C in cultured O. universa (Spero, 1998), which might suggest an

e↵ect on �11B is unlikely.

1
It should also be noted that Sanyal et al. (1996) measured core-top specimens and found them to

agree with their culture calibration
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Figure 4.12: The di↵erence between observed �11BCaCO3 and ambient �11BB(OH)�4
in

core-top, tow and trap O. universa analysed here is not correlated to ambient salinity.
Note the datapoint from Eilat (S = 40.4) is excluded from this figure and the resultant
regression, as to include it would skew the regression. Y-error bars are reproducibility

of measurements from Equation 2.3.

Alternatively, it may be that the disparity in recorded �11B is linked to the presence of

cryptic species in O. universa. Three genotypes (Types I, II and III) have been defined

on the basis of small subunit (SSU) mRNA (Vargas et al., 1999, 2004, Darling and

Wade, 2008), with Type I purported to be associated with oligotrophic conditions,

Type II with extreme oligotrophic systems and Type III with high-productivity and

upwelling regions. These cryptic genetic species have since been shown to correspond

to specific morphotypes (similar to those described by Deuser et al., 1981), with high

porosity making the Caribbean species (Type I) the most distinctive (Morard et al.,

2009). It is possible that boron isotope variations may exist between these genotypes,

which might explain the variable vital e↵ects observed here. The mechanisms for

di↵erences between genotypes are unclear, however: Morard et al. (2009) see no

segregation of genotypes of O. universa with depth, so if genotype variability is the

cause of the observed variability in �11B, it is not caused by any disparate depth

preferences. It is possible that cryptospecies-specific di↵erences in timing of

calcification may exist. Spero and Parker (1985) note that photosynthetic rates in O.

universa are not uniform within daylight hours. These authors observed that

maximum photosynthetic rates in O. universa were not reached until midday; as such
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CaCO3 precipitated before this point, although perhaps considered ’day’ calcite (Lea

et al., 1995) may still record a microenvironment where respiration outweighs

photosynthesis. Furthermore, although Lea et al. (1995) report ratios of day:night

calcification of 3:1, recent studies of day:night banding in O. universa (Vetter et al.,

2013) show roughly equal quantities of CaCO3 precipitated during day and night

(based on the thickness of bands). The variability of day:night calcification observed

by Lea et al. (1995), also suggests that there may be some scope for di↵erences in

day:night calcification ratios between variants. However, invoking cryptospecies-specific

di↵erences in timing is speculative. In addition, although the Gulf of Aqaba (Eilat) is

oligotrophic (e.g. Levanon-Spanier et al., 1979), Vargas et al. (1999) report the Type

III high-productivity (or Meditteranean-type; Morard et al., 2009) genotype from this

region, rather than the Type I oligotrophic variant. Given that this is also the

genotype most prevalent in other regions sampled in this study, it seems di�cult to

explain the dichotomy of �11B signals through cryptospecies variations.

More likely, perhaps, is that habitat depth is driving the observed patterns, as a result

of its association with irradiance (shown to a↵ect vital e↵ects in O. universa; Spero,

1992, Hönisch et al., 2003). Because O. universa migrates to below the euphotic zone

during its life cycle (as observed in MOCNESS tows; Morard et al., 2009, L. Northcote,

unpublished data), much of its calcification in the open ocean must occur below the

photosynthetic compensation point, and hence a deep, respiration-driven signal should

be preserved in core-top samples. In addition, because MOCNESS tows analysed here

were from either 0 - 50 m (TAN1106/40-N9) or 50 - 100 m (TAN1106/24-N8,

TAN1106/50-N8) depth intervals, it is likely that a large proportion of the CaCO3

analysed was precipitated at low light levels. Spero and Parker (1985) report

maximum photosynthetic rate (P
max

) for O. universa at 386 µEinst m�3s�1. While

Spero and Williams (1989) calculate a depth of approximately 40 m for these light

levels (assuming a light attenuation coe�cient of 0.04 m�1 from Tyler, 1975), in the

region of our MOCNESS tows the light attenuation coe�cient is 0.07 - 0.1 m�1, and

consequently light levels drop to 1% of surface irradiance at depths of between 43 to 70

m (Howard-Williams et al., 1995). As such it is probable that tow material analysed

here experienced irradiation levels below those required to compensate for the

acidifying e↵ects of respired CO2. In contrast, in Eilat, O. universa was collected from

< 10 m water depth, in a region where the euphotic zone stretches to up to 115 m
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depth, and light attenuation is low (Stambler, 2006). In this way, high �11B in tows

from Eilat might be caused by sampling individuals from high-light environments

(where the e↵ect of symbiont photosynthesis is strongest) before any ontogenetic

migration to depth had taken place. However it should be noted that such a

hypothesis, if the interlaboratory correction between �11B measurements at

Stonybrook and the NOC (Fig. 4.11) is reliable, requires ambient laboratory lighting

in Sanyal et al. (1996)’s culture calibration (no additional lighting was used) to be low

enough to resemble conditions below the photosynthetic compensation point. Also,

Hönisch et al. (2003) towed O. universa from depths of < 20m, where irradiance was

still above the light compensation for O. universa, yet these specimens still recorded

‘dark’-type �11B signals, which would require these individuals to have recently

migrated up from depth. One additional point that requires attention is how O.

universa maintains symbiosis, if this species lives below the euphotic zone (or at least

P
max

) for a significant proportion of their life. Clearly further sampling (with careful

consideration of morphospecies and symbiont density) and research is required to fully

understand vital e↵ects in O. universa.

4.4.2.3 No size fraction e↵ect in O. universa

A further unexpected result, besides O. universa recording �11B below that of ambient

�11BB(OH)�4
, was the lack of any changes in �11B between size fractions in O. universa

(see Fig. 4.8). Modelling of vital e↵ects in O. universa (Zeebe et al., 2003) suggests

that, if our understanding of microenvironment alteration is correct, one should expect

to see increases in �11B of O. universa with size (depending on the proportionality of

life processes to test radius that is assumed). In addition, Spero and Parker (1985)

show that the number of photosynthetic symbionts found in O. universa scales with

test size. However, other studies (e.g. Billups and Spero, 1995) also report a lack of

size-related change in �13C in O. universa, which would also suggest that

microenvironment perturbation due to photosynthetic activity does not a↵ect larger

individuals to any larger degree than smaller. Further tows from the Gulf of Aqaba

(Eilat), to be carried out in the Autumn of 2013, will seek to address this issue.
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4.5 Conclusions

This chapter, in conjunction with inorganic precipitate experiments (Chapter 1)

provides good evidence that microenvironment alteration is the most likely cause of

widely documented vital e↵ects in planktic foraminifera. Firstly, symbiont-barren

foraminifera consistently record �11B that is lower than that of ambient �11BB(OH)�4
,

consistent with hypothesised respiration-driven acidification of the di↵usive boundary

layer around the foraminiferal test. Secondly, pH sensitivity in symbiont-barren

foraminifera is approximately equal to that of seawater B(OH)4� ion, in agreement

with models of vital e↵ects in foraminifera that suggest that o↵sets in �11B from

ambient �11BB(OH)�4
should be constant regardless of ambient pH. Thirdly,

deep-dwelling symbiont-bearing species show lower absolute �11B and a greater

pH-sensitivity than the shallow-dwelling species G. ruber, which may be consistent

with a weaker bu↵ering e↵ect of photosynthesis at greater depth and thus lower light

intensity. Finally, size-fraction changes in the �11B and trace element composition of

G. inflata are consistent with increased respiration e↵ects with size, as predicted by

working models for the mechanisms of microenvironmental alteration.

This study also highlights areas where our previous understanding was perhaps

lacking. The unexpectedly low �11B in O. universa observed here may be evidence of

the importance of depth habit in determining the degree and direction of

microenvironment alteration. Because these O. universa data are still heavier in �11B

than G. bulloides and other symbiont-barren species (by ⇠ 1-1.5 h; the same o↵set

observed between G. bulloides and O. universa by Hönisch et al., 2003), and because

the slope that they describe is less than unity, it seems that the e↵ects of symbiont

photosynthesis are still evident. However, these data suggest the net e↵ects of

respiration and calcification over the lifespan of open-ocean O. universa must outweigh

those of photosynthesis, seemingly counter to the in vitro micro-environment

observations of Rink et al. (1998) and the model of Zeebe et al. (2003) that is based, in

part, on these observations. These data, then, call into question how representative

culture and lab-based measurements of deep-dwelling symbiont-bearing foraminifera

are of open ocean conditions. On a positive note, the new calibration is very well

constrained and residual scatter in O. universa is seen to be low, so accurate and

precise surface pH reconstructions using this species may be readily attainable,
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providing the outlying tow datum from the Gulf of Aqaba (Eilat) is not evidence for

biogeographic di↵erences in vital e↵ects.

In summary, this chapter extends the number of species for which MC-ICPMS

�11B-pH calibration is available, broadening the scope of palaeo-pH reconstruction and

providing a more solid basis to approach the question of foraminiferal vital e↵ects.

Although in the case of O. universa this chapter yields unexpected results and poses

numerous questions, it is valuable both in highlighting previously unknown

complications and priorities for future research work. While a new calibration for G.

bulloides is also presented, �11B signals in this species appear to be more scattered than

in other species, either because of variable depth habit, genotype, seasonality, vital

e↵ects (e.g. incorporation of metabolic CO2), and/or propensity for contamination. As

such it is advised that prior to downcore application of the calibration presented here,

preliminary tests are undertaken at a given site to ensure first that the calibration

produces valid estimates of late Holocene pH values. In addition, high resolution

sampling and moving-average smoothing of trends may be advisable. Size fraction

e↵ects in G. bulloides are apparently inconsistent between sites and as such it may be

advisable, when applying the calibration downcore, to test for size fraction di↵erences

at discrete intervals throughout the sampled core section. Alternatively, if size-fraction

changes in �11B are shown to vary in magnitude and trend within core, it might be

advisable to combine a broad range of size fractions for each analysis.



Chapter 5

A Cautionary Tale: assessing the

applicability of B/Ca ratios in G.

ruber as a proxy for the

carbonate system

Abstract

Understanding carbon cycling in the past is crucial to deciphering the controls on the

Earth’s climate system, and hence to better predict the likely e↵ects of future

anthropogenic climate change. Given this importance, there has been great interest in

the development of new proxies for the ocean carbonate system. One such proxy that

is receiving much recent interest, given the well-documented pH-dependent speciation

of boron in seawater, is the boron concentration of marine carbonates (expressed as

B/Ca ratios). However, the carbonate system controls on B/Ca ratios appear not to be

straightforward, with �[CO2�
3 ], in the case of benthic foraminifera, often correlating

best with B/Ca ratios, rather than pH,
B(OH)�4
HCO�

3
or

B(OH)�4
DIC as our understanding of the

speciation of boron in seawater and its incorporation into CaCO3 would predict.

Furthermore, culture experiments have shown that in planktic foraminifera properties

such as salinity and [B]sw have profound e↵ects on B/Ca ratios beyond that predicted

by simple partition coe�cients. Here the controls on B/Ca ratios in G. ruber are

147
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determined via a combination of culture experiments and core-top calibration,

revealing previously unnoticed drivers of boron incorporation in this species, and

suggesting that B/Ca ratios in foraminiferal carbonates are not a reliable proxy for

past carbonate system conditions. Instead B/Ca ratios in G. ruber show greatest

correlation with [PO3�
4 ] in seawater, suggestive perhaps of a rate or crystallographic

control on boron incorporation.

5.1 Introduction

5.1.1 The B/Ca proxy in Planktic Foraminifera: theoretical basis

The B/Ca proxy has generated much interest as a potential carbonate system proxy,

and indeed has been used in the reconstruction past atmospheric CO2 levels (Yu et al.,

2007b, Foster, 2008, Tripati et al., 2009, Yu et al., 2013). One reason why the B/Ca

proxy has generated such interest is its hypothesised foundation in inorganic aqueous

chemistry. Boron is almost exclusively present in seawater in one of two forms: the

tetrahedrally-coordinated borate molecule, B(OH)4�, and the trigonally-coordinated

boric acid, or B(OH)3. Some boron does exist in polynuclear forms at typical seawater

pH, but this amount is negligible under normal seawater boron concentrations (Su and

Suarez, 1995). The relative proportions of the two species is dependent on pH, such

that at low pH boron is entirely in the form of B(OH)3, and at high pH it is found as

B(OH)4� (see Fig 5.1).

Since B(OH)4�, the charged ion, is thought to be only species of boron incorporated

into CaCO3, it was proposed that B/Ca ratios in CaCO3 should increase with

increased [B(OH)4�] (Hemming and Hanson, 1992). Given that the relative abundance

of B(OH)4� is pH dependent (Fig. 5.1), B/Ca ratios in CaCO3 should, then, respond

to changes in the marine carbonate system. However, the speciation of boron in

seawater is not the only control on B/Ca in CaCO3: the site at which boron

substitutes into the crystal lattice also has a part to play. Hemming and Hanson

(1992) suggest that boron substitutes at the CO2�
3 site in CaCO3, given the similarity

of B-O and C-O bond lengths (0.137 and 0.128 nm respectively; Kakihana et al.,

1977), although they also note the possibility that B resides in defect sites. Based on

this assertion, Hemming and Hanson (1992) proposed the formula for boron



A Cautionary Tale: B/Ca ratios in G. ruber as a proxy for the carbonate system? 149

0 

20 

40 

60 

80 

100 

P
ro

p
o

rt
io

n
 (

%
 t
o

ta
l 
B

) 

B(OH)
3
 

B(OH)
4

- 

6 7 8 9 10 

pH 

Figure 5.1: The relative abundances of the two most abundant boron species in
seawater, at 25 �C and S = 35 psu. Boric acid, B(OH)3, is marked in red, while borate

ion, B(OH)4�, is marked in blue.

substitution into CaCO3 described in equation 5.1 below.

CaCO3solid +B(OH)�4aqueous ) Ca(HBO3)
solid

+HCO�
3aqueous +H2O (5.1)

By extension, they defined the exchange distribution coe�cient (KD) for this reaction

as

KDB
calcite

=
[HBO2�

3 /CO2�
3 ]

solid

[B(OH)�4 /HCO�
3 ]fluid

(5.2)

which was later shortened (Yu et al., 2007b, Zeebe and Wolf-Gladrow, 2001) to

KDB
calcite

=
[B/Ca]

solid

[B(OH)�4 /HCO�
3 ]fluid

. (5.3)

Consequently, if this mechanism for incorporation is correct, B/Ca ratios in

foraminifera should be dependent not only on the pH-driven speciation of boron

species, described above, but on the speciation of aqueous dissolved inorganic carbon
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(DIC) compounds that compete for incorporation sites (also dependent on pH,

temperature, pressure and salinity; Zeebe and Wolf-Gladrow, 2001). Inorganic

precipitation experiments (Hemming et al., 1995, Sanyal et al., 2000, He et al., 2013)

and culture experiments of marine calcifiers (Sanyal et al., 1996, 2001, Allen et al.,

2011, 2012, and this study) suggest that pH (and thereby aqueous [CO2�
3 ]) is indeed a

strong control on B/Ca ratios in CaCO3. However, culture experiments (Allen et al.,

2011, 2012) also demonstrate that the controls on boron incorporation in foraminifera

are more complex and more numerous than previously thought. Other variables

(besides pH) that have been suggested to influence recorded B/Ca include temperature

(Wara et al., 2003, Yu et al., 2007b, Tripati et al., 2009), salinity (Allen et al., 2011),

boron concentrations in seawater (Allen et al., 2011), crystal growth surface processes

(Hemming et al., 1995, 1998), post-depositional dissolution (Ni et al., 2007, Seki et al.,

2010, Coadic et al., 2013) and foraminiferal physiology and ontogeny (Ni et al., 2007,

Allen et al., 2011, 2012). Furthermore, down-core applications of the B/Ca proxy (Yu

et al., 2007b, Foster, 2008, Tripati et al., 2009, Palmer et al., 2010) that are based on

the pH-dependency of B/Ca and the empirical boron partition coe�cient (KD; defined

in equation 5.3 above), have been shown to be flawed: such studies may produce

artificial records of carbonate system changes that are in fact wholly derived from

variations in the denominator of KD, entirely independent of variations in measured

B/Ca (Allen and Hönisch, 2012). In fact, raw foraminiferal B/Ca ratios in these

studies bear little relation to ice core pCO2 records, and hence ocean pH (see Allen

and Hönisch, 2012, Fig. 7), nor �11B reconstructions from the same locations (Palmer

et al., 2010). In contrast, B/Ca ratios in N. pachyderma (Yu et al., 2013) do appear to

be controlled by the in situ marine carbonate system, and track atmospheric pCO2

downcore. Clearly, then, there is a need for further research into the controls on boron

incorporation in foraminiferal calcite if B/Ca ratios in foraminifera are to prove a

useful and reliable tool in palaeoceanography. Below these various factors proposed as

influencing B/Ca ratios in foraminifera are discussed: namely, temperature, salinity,

boron concentrations in seawater, crystal surface processes, post-depositional

dissolution and foraminiferal life processes.

Temperature should influence boron incorporation through its influence on K1, K2 and

KB constants, which in turn alter
B(OH)�4
HCO�

3
ratios in seawater. However, this e↵ect is

small, and likely beyond the limits of analytical detectability. Neither cultures of O.
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universa between 18 - 26 �C by Allen et al. (2011), nor cultures of G. ruber and G.

sacculifer from 24 - 30 �C by Allen et al. (2012) show a significant relationship

between B/Ca and temperature. As such, in in spite of the conclusions of some earlier

studies (e.g. Wara et al., 2003, Yu et al., 2007b, Tripati et al., 2009), it now seems

di�cult to support a discernible temperature e↵ect on foraminiferal B/Ca. Instead

observed temperature relationships are likely either an artefact of interpreting B/Ca

ratios in terms of KD (KD = B/Ca

B(OH)�4 /HCO�
3
, as in Yu et al., 2007b, Foster, 2008,

Tripati et al., 2009), which may produce artificial relationships (due to the e↵ect of

temperature on the denominator; see Allen and Hönisch, 2012, for further discussion),

or alternatively a product of the correlation of temperature with [CO2�
3 ], as may be

the case in Yu et al. (2007b). In light of these recent culture observations, also, it

seems likely that down-core correlations of B/Ca with Mg/Ca-derived SST (Wara

et al., 2003, Yu et al., 2007b) arise either coincidentally, as a result of diagenesis, or as

a result of some process that influences both B/Ca and Mg/Ca (e.g. salinity,

Kisakürek et al., 2008, Allen et al., 2012).

Although pure thermodynamics would normally imply a temperature e↵ect on trace

element partition coe�cients between fluid and crystal (see for example Blundy and

Wood, 1994), the incorporation of trace elements in calcite has been shown to not

adhere to equilibrium thermodynamics (Rimstidt et al., 1998), due to surface

site-related and rate-related kinetic e↵ects. Moreover, thermodynamic models and

theoretical studies have typically focussed on monoatomic cations (such as Mg2+ and

Sr2+), whereas boron is incorporated as the molecular anion B(OH)4�, and so the

criteria used to estimate surface incorporation in these models (ionic radius and simple

point charge distributions) are not su�cient to accurately predict adsorption and

incorporation (Cheng, 1998, Masel, 1996, E↵enberger et al., 1981). Beyond these

considerations, the propensity for biological mechanisms to modulate crystal growth

rate (potentially a key factor in determining KD; Ruiz-Agudo et al., 2010) make

comparisons with purely inorganic systems di�cult. As such, it is perhaps

unsurprising that any influence of temperature on foraminiferal boron incorporation is

poorly supported by observation.

As with temperature, salinity will alter the equilibrium constants of seawater, and in

turn should a↵ect
B(OH)�4
HCO�

3
, and hence B/Ca. However, Allen et al. (2011, 2012) found

salinity to have a much larger e↵ect on B/Ca ratios in planktic foraminifera than that
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expected from the alteration of equilibrium constants alone. This salinity e↵ect might

be partially explained by an increase in [B]
sw

at high salinities: Allen et al. (2011) note

that increasing [B(OH)4�] by raising total [B]
sw

at a constant pH resulted in a

disproportionately large response in B/Ca compared to experiments where [B(OH)4�]

was increased through pH-dependent speciation. This disproportionate e↵ect of [B]
sw

may be a product of competition between B and other ions (e.g. CO2�
3 , or

alternatively, other impurities- see below) for incorporation sites. However, it is also

possible that increasing salinity may significantly raise B/Ca without any elevation of

[B]
sw

. For example, Kitano et al. (1978a) found that boron incorporation into

inorganically precipitated CaCO3 rose with the addition of pure NaCl (i.e. with no

concurrent rise in [B]
sw

), which suggests that there is some other e↵ect, perhaps linked

to ionic strength a↵ecting crystal surface processes, or ion pairing in solution.

Indeed, crystal surface processes have been shown to have a strong e↵ect on boron

incorporation into inorganic precipitates. Hemming et al. (1995) highlight that

increased boron incorporation in inorganically-precipitated aragonite (where, they

argue, B is incorporated in tetrahedral form without need of re-coordination, following

Sen et al., 1994) relative to calcite is evidence for the kinetic requirements of boron

re-coordination being an incorporation-limiting factor. Boron doping in inorganic

precipitation experiments (e.g. Ruiz-Agudo et al., 2012) disrupts orderly crystal growth

patterns, illustrating that incorporation of boron necessitates reorganisation of lattice

and growth face structures. These studies suggest that slower rates of calcite crystal

precipitation are key to the levels of B incorporated, as they permit more complete

re-coordination of tetrahedral boron into trigonal form. In addition, Hemming et al.

(1995) and Hemming et al. (1998) also suggest that boron incorporation may be

dictated by the availability of defect or anion sites, which in turn is dependent on both

the structure of the growing crystal face, and the degree to which these sites may be

occupied by other competing impurities. In this way crystallographic processes, or

other chemical substitutions that might drive an increase in the number of defects

sites, may produce elevated B/Ca ratios. This would also be supported by the findings

of Hobbs and Reardon (1999). It is perhaps surprising, then, that these sorts of

influences have been largely overlooked by the palaeoceanographic community.

A final inorganic factor which may a↵ect the measured B/Ca of foraminifera is

post-mortem dissolution and recrystallisation in the water column, at the
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sediment-water interface, and/or following burial. Ni et al. (2007) note decreasing

TE/Ca ratios in smaller size fractions of G. sacculifer and G. ruber, which they

interpret as loss of impurities with dissolution (because smaller tests have a large

surface:volume ratio and are more susceptible to dissolution). More conclusive,

however, are the data of Seki et al. (2010) and Coadic et al. (2013), that show that

B/Ca in core-top sediment samples of G. sacculifer decreases systematically along

depth transects, as waters at the sediment interface become more corrosive. Results for

G. ruber are less conclusive (Seki et al., 2010), but suggest only a minor dissolution

e↵ect on B/Ca in this species (at least at ⌦CaCO3 > 0.9). The influence of diagenesis

on B/Ca in the sediment column has yet to be investigated. Any dissolution e↵ect

could, however, constitute a significant barrier to the successful application of the

B/Ca proxy, particularly over large events such as the PETM, where the lysocline may

have fluctuated and the intensity of deep-sea carbonate dissolution may have varied.

Inorganic processes aside, the life processes of the foraminifera may also a↵ect boron

incorporation into carbonates, and cause further deviation from the the inorganic basis

of the proxy. The large interspecific di↵erences in B/Ca between planktic foraminifera

(see for example Allen et al., 2012), and between planktic and benthic foraminifera

(see for example Foster, 2008), show that boron incorporation must be (to some

extent) biologically mediated. The di↵erence in B/Ca between various species of

planktic foraminifera seems consistent with existing theories of microenvironment

alteration (see Section 1.4.2.3). Firstly, increasing B/Ca from O. universa<G.

sacculifer<G. ruber is similar to the increase in �11B between these species (see

Chapter 4), and indeed the progressive shallowing of depth habitats (and increasing

illumination and symbiont photosynthesis) in these species (Hemleben et al., 1989).

Secondly, symbiont-bearing planktic foraminifera tend to record higher B/Ca ratios

than symbiont-barren planktic foraminifera, which would be consistent with a lower

microenvironment pH (and thus
B(OH)�4
DIC ) in those foraminifera that do not possess

photosynthetic symbionts. Thirdly, increasing B/Ca with size fraction, as seen by Ni

et al. (2007), if not caused by post-depositional dissolution, might be caused by

intensification of vital e↵ects with increasing size, as suggested by Henehan et al.

(2013). Finally, observed patterns of intratest variability are permissively consistent

with day:night microenvironment pH fluctuations (O. universa LA-ICPMS profiles;

Allen et al., 2011) or pre-gametogenic expulsion of symbionts (G. sacculifer final
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chambers; Allen et al., 2012). That said, the scale of disparity in B/Ca between

benthics and planktics (a 2⇥ to 4⇥ increase in benthics) might imply some di↵erence

in biomineralisation pathways, since the microenvironment of symbiont barren benthic

foraminifera experiences no pH elevation (Glas et al., 2012a).

5.1.2 Outstanding issues

To date, the clear carbonate system control on B/Ca ratios of planktic foraminifera

that is seen in culture (Allen et al., 2011, 2012) has not always been reproduced in

open ocean planktic foraminifera, with correlations between B/Ca and
B(OH)�4
HCO�

3
or

B(OH)�4
DIC clouded by a possible temperature e↵ect not seen in culture (Yu et al., 2007b),

or in other cases simply absent (Foster, 2008). As such, as encouraged by Allen and

Hönisch (2012), core-top calibration over a broad geographic and hydrographic sample

set is required, to better determine the dominant environmental controls on boron

incorporation. Given also the possibility of dissolution e↵ects on B/Ca ratios (as

shown by Coadic et al., 2013, in the related species G. sacculifer), comparison of B/Ca

ratios in G. ruber sample material from varying post-depositional calcite saturation

states is required. Finally, in addition to testing the environmental controls on boron

incorporation, the potential influence of biotic factors, or ‘vital e↵ects’ (such as an

increase in B/Ca with ontogeny), must also be better understood before B/Ca could

be applied to extinct species of planktic foraminifera.

5.2 Methods

5.2.1 Culture experiments in G. ruber

Data from cultured G. ruber comes from the experiments of Henehan et al. (2013), and

therefore the reader is referred to Chapter 3 for details of culturing protocol and

carbonate system control (Section 3.2). TE/Ca ratios for cultured material, similar to

�11B, are obtained via mass-balance calculations, as described in equation 5.4 below.

TE/Ca
culture

=
TE/Ca

bulk

� (TE/Ca
controls

⇤ Pmass

controls

)

Pmass

culture

(5.4)
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Figure 5.2: Locations of core-top and sediment trap samples used in this study. White
circles are mixed morphotype coretop sites, grey circles are G. ruber sensu lato only,
black circles are G. ruber sensu stricto only, white circles with a black outline are sites
where mixed morphotype and G. ruber sensu stricto only measurements were taken,
and grey circles with a black outline are sites where both morphotypes were measured.

Pmass

controls

is the proportion of mass calcified prior to culture, while Pmass

culture

is the

proportion of mass grown in culture. To determine this, initial pre-culture mass was

estimated from starting diameter using a calculated size:mass relationship (equation

3.1 and figure 3.6) of Henehan et al. (2013), and end-culture mass was determined by

weighing of cultured tests. TE/Ca
controls

is the trace element composition of G. ruber

towed at the time of the collection of cultured individuals, while TE/Ca
bulk

is the

measured trace element ratio composition of post-culture material.

5.2.2 Site and Sample Selection

To investigate the controls on B/Ca ratios in foraminifera outside of controlled culture

conditions, G. ruber were analysed from geographically disparate core-top sites (from

archives at Tübingen and NIWA, Wellington). In addition, sediment trap sample

material from the Cariaco Basin and towed specimens from Eilat were analysed, with

the aim of investigating post-depositional alteration. To expand the dataset still

further, core-top B/Ca data from Foster (2008) are also included in analyses, but with

carbonate system parameters re-estimated following Henehan et al. (2013) for

consistency.
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5.2.3 Carbonate System Characterisation

Carbonate system calculations for culture experiments are described in Henehan et al.

(2013). For core-top samples, also following Henehan et al. (2013), pre-industrial

carbonate system parameters are estimated using the Takahashi et al. (2009) database

of global SST, salinity and CO2 fluxes, modelled post-industrial carbon system changes

from Gloor et al. (2003), and nutrient data from GLODAP and CARINA databases

(Key et al., 2004, 2010). For full discussion of these methods the reader is referred to

Section 3.2.2.2. In addition, mean annual surface water [PO3�
4 ] at each site is obtained

from World Ocean Atlas (WOA; Garcia et al., 2010).

5.2.4 Sample Preparation

Foram cleaning throughout is largely as described in Rae et al. (2011) and (Henehan

et al., 2013), in turn based on the approach of Barker et al. (2003). Foraminifera

(cleaned in batches of < 3 mg1) are cracked open between two clean glass slides,

ultrasonicated and rinsed repeatedly with Milli-Q ultrapure water (18.2 M⌦) to

remove clays. For tow and sediment trap samples, where clay is not a major

contaminant, as little as three rinses were carried out (to minimise sample loss), but

usually the in core-top samples, five or more rinses are required to remove all visible

clay material. Culture, sediment trap and tow samples, in agreement with other

culturing studies (e.g. Russell et al., 2004), were subject to intensified oxidative

cleaning (3 x 20-30 min treatments of 250-400 µl (depending on sample size) 1% H2O2

in 0.1 M NH4OH4 at 80 �C) to account for the larger organic content. In core-tops,

oxidative cleaning was shorter (3 x 5 min) to minimise sample loss. Samples are then

subject to a brief weak acid leach in 0.0005 M HNO3 to remove any readsorbed

contaminants. Finally 200 µl of Milli-Q is added to each sample (to slow subsequent

dissolution and reduce the likelihood of leaching of B o↵ any remnant contaminants)

and 0.5 M HNO3 (normally <300 µl) added incrementally until dissolved. To ensure

complete removal of clays and other contaminants, samples are centrifuged for > 5 min

at 1400 rpm, and the last ⇠ 20 µl discarded.

1
Such large sample sizes were used because these same samples were often, but not always successfully,

analysed for boron isotopes; see Chapter 2.
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5.2.5 ICP-MS analysis

Trace element analysis was carried out on Thermo Element ICP-MS at the National

Oceanography Centre, Southampton (NOCS; core-tops and sediment traps) and the

Bristol Isotope Group (BIG; cultures and tows). Analysis of common consistency

standards ensures no bias exists between these two laboratories in measurements of the

trace elements (e.g. B/Ca, Li/Ca, Mg/Ca, Sr/Ca etc). This is despite slight di↵erences

in sample introduction system: typical Ar sample gas flow through the nebuliser at

BIG is ⇠1.2 L/min, while at NOCS sample gas input is fixed at 0.7 L/min, and an

additional gas supply (typically to ⇠ 0.4-0.45 L/min) is added directly into the spray

chamber to reduce strain on nebuliser tips. In both laboratories a Teflon barrel spray

chamber is used, and ammonia gas (0.07 L/min) is added to convert sample B(OH)3 to

B(OH)4� (which is more easily washed out), following Al-Ammar et al. (2000).

Tuning is performed on a 0.1 ppb multielement tune solution (with 0.5 ppb of Boron)

to optimise sensitivity while minimising the presence of oxides (to this end, UO is

monitored and the ratio of UO to U counts kept to below 7%). Typical counts for B,

In and U are 20-50 kcps, 70-100 kcps and 100-140 kcps respectively. Prior to each

analytical session, in-house consistency standards (CS1, 2 and 3; B/Ca ratios of ⇠ 196,

492 and 38 µmol/mol respectively) are analysed at a range of concentrations (typically

0.5 mM Ca, 1mM Ca and 2mM Ca) to monitor machine performance. The best

reproducibility of element ratios on measured via ICPMS is found when samples and

their bracketing standards are measured at the same concentration (Yu et al., 2005).

To this end, an aliquot of each sample (typically 20 µl) is further diluted in 0.5 M

HNO3 (typically 200 µl) and analysed for [Ca] and (at lower confidence) [B]. Based on

these results, samples are diluted with 0.5 M HNO3 to match standard concentration.

The bracketing standard used is an in-house gravimetric standard (BSGS+B2), with

measurement blocks as shown in Table 5.1.

5.2.6 Statistical analyses

Multiple linear regressions were carried out using R statistical software

(www.r-project.org). Non-contributing parameters were removed from models

according to their contribution to the model’s Akaike Information Criterion (AIC;

www.r-project.org
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Blank
BSGS+B2
Blank

Sample 1
Blank

Sample 2
Blank

Sample 3
Blank

BSGS+B2
Blank

Table 5.1: Typical measurement block for trace element analysis on the Element MC-
ICPMS. Blank used is 0.5M teflon-distilled 0.5M HNO3. BSGS+B2 and samples are

diluted to the same [Ca].

Akaike, 1974). This parameter describes the relative quality of each of a set of

statistical models derived from a set of data, based on the compromise between the

complexity of each model and its goodness-of-fit. Thus, if the addition of a parameter

makes no positive contribution to the AIC, the parameter is omitted from the model.

To better illustrate the relative importance of each environmental parameter (in

addition to the t and p values given), the relaimpo package (Groemping, 2006) is used.

Following the recommendation of Groemping (2006), we estimate relative importances

via the lmg approach, based on the work of Lindemann et al. (1980). This removes the

otherwise sizeable influence of factor ordering (i.e. which factor is entered into the

model first) on the relative importance metric, by averaging out relative importances

computed from all factor ordering permutations. 95% confidence intervals on these

relative importances are calculated via bootstrapping: 1000 repeated samplings from

the residuals of the regression model (following Hesterberg et al., 2005).

5.3 Results

5.3.1 G. ruber from culture

B/Ca ratios from culture data are shown in Figure 5.3 below. These data show a

strong positive correlation with pH,
B(OH)�4
DIC and

B(OH)�4
HCO�

3
. Compared to cultures of G.

ruber (pink) (Allen et al., 2012), these new data show a much more linear relationship.
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5.3.2 G. ruber from core-tops and sediment traps

The results of B/Ca measurements in coretop and sediment trap samples of G. ruber

are given in Table 5.2. Coretop and sediment trap data show no strong relationship

with either pH,
B(OH)�4
HCO�

3
, or

B(OH)�4
DIC (see Fig. 5.4). Also, unlike in benthic foraminifera

(Yu and Elderfield, 2007, Rae et al., 2011, Brown et al., 2011), there is no correlation

evident between B/Ca and �[CO2�
3 ] (R2=0.02). Regression plots with other

environmental parameters ([PO3�
4 ], salinity, ⌦CaCO3 at the site of deposition, and sea

surface temperature), morphotype and test size are given in Fig. 5.5. To better

determine the nature of other controlling factors on boron incorporation, the e↵ect of
B(OH)�4
DIC from culture (the strongest controlling factor in Allen et al. (2012) and in this

study, Fig. 5.3) was removed, and the residual variation from the linear B/Ca-
B(OH)�4
DIC

culture calibration (B/Ca= 1378.2(
B(OH)�4
DIC ) + 97.51; see Fig. 5.3) was also tested.

Correlations between these environmental parameters and residual variation from the

culture B/Ca-
B(OH)�4
DIC relationship are shown in blue. Note that residual B/Ca (i.e. the

deviation from the culture calibration of B/Ca-
B(OH)�4
DIC ) is always negative, signifying

that cultures were always elevated in B/Ca relative to open ocean samples.
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Site Description Size

fraction

Lat

(�N)

Long

(�E)

Temp

(�C)

±2� Salinity ±2� Deep ⌦ PO3�
4 pH ±2�

B(OH)�4

HCO�

3

B(OH)�4
DIC B/Ca

(µmol/mol)

Residual

B/Ca

MC394 mixed morph 300-355 14.38 64.57 27.67 2.24 36.20 0.35 0.88 0.346 8.135 0.020 0.0699 0.0597 136.3 -43.6

GGC48 mixed morph 250-300 0.00 161.00 29.41 0.36 34.61 0.51 0.92 0.151 8.108 0.064 0.0668 0.0574 95.6 -81.1

GeoB1208-2 ** mixed morph 300-355 -24.49 7.11 21.05 3.64 35.62 0.19 1.33 0.334 8.165 0.044 0.0635 0.0555 112.0 -62.0

MC655 sensu lato 250-300 38.42 5.40 23.23 3.00 37.38 0.20 3.26 0.15 8.161 0.050 0.0460 0.0418 116.6 -38.5

T329 sensu lato 250-300 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 89.2 -97.4

MC120 sensu lato 250-300 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 136.4 -38.8

Eilat sensu lato 250-300 29.50 34.92 23.76 4.25 40.40 0.22 4.48 0.129 8.192 0.008 0.0803 0.0679 119.4 -71.8

Q699 sensu lato 250-355 -42.42 169.30 14.88 3.53 35.10 0.25 2.57 0.35 8.197 0.005 0.0538 0.0480 127.9 -35.7

MC655 sensu lato 300-355 38.42 5.40 23.23 3.00 37.38 0.20 3.26 0.15 8.161 0.050 0.0460 0.0418 141.5 -13.5

MC120 sensu lato 300-355 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 145.5 -29.8

ODP 664 sensu lato 300-355 0.10 -23.23 26.81 3.97 35.77 0.35 0.98 0.117 8.141 0.008 0.0685 0.0588 119.4 -59.1

G4 sensu lato 300-355 -28.42 167.25 21.95 3.98 35.82 0.11 1.65 0.199 8.207 0.030 0.0686 0.0592 122.2 -56.8

MC436 sensu lato 300-355 39.80 -21.06 18.40 3.74 36.06 0.09 0.92 0.091 8.201 0.018 0.0614 0.0538 116.0 -55.7

MC497 sensu lato 300-355 23.53 63.31 26.86 3.64 36.37 0.21 1.22 0.482 8.156 0.020 0.0719 0.0613 165.1 -16.9

MC423 sensu lato 300-355 17.75 -65.59 27.50 2.00 35.62 0.82 1.76 0.077 8.174 0.012 0.0748 0.0634 133.5 -51.4

T329 sensu lato 300-355 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 113.9 -72.7

GeoB4216-1 ** sensu lato 300-355 30.63 -12.40 19.83 3.84 36.53 0.13 1.56 0.19 8.188 0.006 0.0657 0.0572 121.6 -54.8

OC476-SR223 sensu lato 300-355 -33.53 166.53 19.33 3.74 35.70 0.13 1.02 0.291 8.213 0.014 0.0643 0.0560 102.5 -72.3

MC420 sensu lato 355-400 17.04 -66.00 27.59 1.08 35.54 0.48 0.98 0.077 8.173 0.013 0.0747 0.0633 110.8 -74.0

G4 sensu lato 355-400 -28.42 167.25 21.95 3.98 35.82 0.11 1.65 0.199 8.207 0.030 0.0686 0.0592 136.4 -42.6

MC120 sensu stricto 250-300 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 132.9 -42.4

CAR22(z) sensu stricto 250-300 10.50 -64.66 24.26 1.97 36.84 0.11 5.52 0.06 8.066 0.018 0.0562 0.0592 121.5 -57.6

T329 sensu stricto 250-300 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 141.0 -45.6

GGC48 sensu stricto 250-300 0.00 161.00 29.41 0.36 34.61 0.51 0.92 0.151 8.108 0.064 0.0668 0.0574 99.1 -77.5

Eilat sensu stricto 250-300 29.50 34.92 23.76 4.25 40.40 0.22 4.48 0.129 8.192 0.008 0.0803 0.0679 121.3 -69.8

OC476-SR223 sensu stricto 250-355 -33.53 166.53 19.33 3.74 35.70 0.13 1.02 0.291 8.213 0.014 0.0643 0.0560 95.1 -79.6

MC120 sensu stricto 300-355 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 144.9 -30.4

MC120 sensu stricto 300-355 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 166.0 -9.3

MC120 sensu stricto 300-355 12.47 45.38 28.38 5.55 36.76 1.23 1.34 0.403 8.092 0.068 0.0656 0.0564 136.7 -38.6

MC497 sensu stricto 300-355 23.53 63.31 26.86 3.64 36.37 0.21 1.22 0.482 8.156 0.020 0.0719 0.0613 160.6 -21.4

ODP 664 sensu stricto 300-355 0.10 -23.23 26.81 3.97 35.77 0.35 0.98 0.117 8.141 0.008 0.0685 0.0588 107.4 -71.1

G4 sensu stricto 300-355 -28.42 167.25 21.95 3.98 35.82 0.11 1.65 0.199 8.207 0.030 0.0686 0.0592 119.7 -59.4

CAR22(z) sensu stricto 300-355 10.50 -64.66 24.26 1.97 36.84 0.11 5.52 0.06 8.066 0.018 0.0562 0.0496 129.7 -36.2

GGC48 sensu stricto 300-355 0.00 161.00 29.41 0.36 34.61 0.51 0.92 0.151 8.108 0.064 0.0668 0.0574 103.2 -73.5

T329 sensu stricto 300-355 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 131.1 -55.6

T329 sensu stricto 300-355 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 144.7 -42.0
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Site Description Size

fraction

Lat

(�N)

Long

(�E)

Temp

(�C)

±2� Salinity ±2� Deep ⌦ PO3�
4 pH ±2�

B(OH)�4

HCO�

3

B(OH)�4
DIC B/Ca

(µmol/mol)

Residual

B/Ca

MC420 sensu stricto 300-355 17.04 -66.00 27.59 1.08 35.54 0.48 0.98 0.077 8.173 0.013 0.0747 0.0633 110.9 -73.8

MC420 sensu stricto 355-400 17.04 -66.00 27.59 1.08 35.54 0.48 0.98 0.077 8.173 0.013 0.0747 0.0633 117.8 -66.9

MC497 sensu stricto 355-400 23.53 63.31 26.86 3.64 36.37 0.21 1.22 0.482 8.156 0.020 0.0719 0.0613 178.4 -3.6

G4 sensu stricto 355-400 -28.42 167.25 21.95 3.98 35.82 0.11 1.65 0.199 8.207 0.030 0.0686 0.0592 114.1 -65.0

T329 sensu stricto 355-400 -12.96 173.57 28.63 1.45 34.79 0.24 2.59 0.215 8.175 0.023 0.0766 0.0647 114.7 -71.9

ODP 847 * sensu stricto 300-355 0.20 -95.32 20.71 1.40 34.68 0.26 0.88 0.653 8.059 0.056 0.0526 0.0465 115.3 -46.4

ODP 925 * sensu stricto 300-355 4.20 -43.48 26.78 0.77 35.93 0.81 1.47 0.168 8.138 0.004 0.0699 0.0597 113.8 -66.0

ODP 664 * sensu stricto 300-355 0.10 -23.23 28.81 3.97 35.65 0.35 0.98 0.117 8.137 0.073 0.0685 0.0588 108.0 -70.5

ODP 668 * sensu stricto 300-355 4.77 -20.93 29.54 0.70 35.51 0.24 1.44 0.082 8.163 0.018 0.0741 0.0629 112.4 -71.8

ODP 999 * sensu stricto 300-355 12.75 -78.73 28.63 0.98 35.39 0.32 1.15 0.077 8.158 0.019 0.0720 0.0613 119.5 -62.5

ODP 806 * sensu stricto 300-355 0.32 159.37 30.36 0.19 34.75 0.25 1.03 0.132 8.115 0.023 0.0689 0.0590 111.0 -67.8

GeoB1523-1 ** sensu stricto 300-355 3.83 -41.62 27.76 0.74 35.54 0.62 1.31 0.142 8.192 0.042 0.0826 0.0693 113.4 -79.6

ODP 664 ** sensu stricto 355-425 0.10 -23.23 28.81 3.97 35.65 0.35 0.98 0.117 8.137 0.073 0.0685 0.0588 113.7 -64.9

Table 5.2: Summary of core-top and sediment trap (CAR 22(z) only) samples of G. ruber analysed for B/Ca. Sites marked * are taken from
Foster (2008), while samples marked ** were analysed by G. L. Foster (unpublished data), and are reproduced here with permission. For these sites,
carbonate system parameters were re-estimated via the methods of Henehan et al. (2013) for consistency with the rest of the dataset. Carbonate
system parameters are estimated as per Section 3.2.2.2. PO3�

4 measurements are surface measurements from the nearest World Ocean Atlas datapoint
(Garcia et al., 2010). Uncertainty on temperature, salinity and pH is the two standard deviations of intraannual variability in these parameters at

each site. Residual B/Ca is the measured B/Ca minus the predicted B/Ca from the culture B/Ca-B(OH)�4
DIC relationship, and is used to better test

for other controlling factors.
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5.4 Statistical Analyses

5.4.1 Tests for Collinearity

Tests for collinearity in the environmental parameters incorporated in the model (Fig.

5.6) show that [PO3�
4 ] is not significantly correlated with other carbonate system or

hydrographic variables. While salinity correlates with
B(OH)�4
DIC to some degree (R2=

-0.5), correlation of B/Ca with
B(OH)�4
DIC is poor (Fig. 5.4), and if the influence of

B(OH)�4
DIC is stripped from the dataset using the relationship observed in culture (i.e. the

residuals from this relationship measured), the e↵ect of salinity is strengthened (see

Fig. 5.5). As such it seems that the e↵ect of salinity on B/Ca is independent of any

collinearity with
B(OH)�4
DIC .

5.4.2 Multiple Regression Models

Core-top and tow samples (both sensu stricto and sensu lato) from Eilat are strong

outliers that bias the regressions, as signified by Cook’s distances2of >1 (Cook and

Weisberg, 1982). This deviance stems from salinity: although the salinity of the Gulf

of Aqaba is unusually high (⇠40.4), B/Ca measurements are not as high as the salinity

trends in the rest of the data would suggest. Since the inclusion of core-top and tow

data from Eilat significantly alters regression model fits (removing an otherwise strong

salinity component of the linear model, and artificially implicating temperature as a

small but significant control), we omit these datapoints from statistical tests below.

The significance of this is discussed in section 5.5.7. Fitting of multiplicative models

(allowing interaction of variables) resulted in poorer fits, and as such these models are

not discussed here.

Results of multiple regression analyses are given in Tables 5.3, 5.4 and 5.5. In analysis

of G. ruber(all morphotypes; Table 5.3), morphotype is discounted from the model on

the basis of a deterioration in AIC score. Despite this, multivariate regression analysis

of the sensu stricto morphotypes alone results in better model fits (all sizes, R2
(adj.) =

72.04%, Table 5.4) than analyses of either the whole dataset (either morphotype and

2
Cook’s distance is a statistical method for detection of datapoints that have high leverage and/or

large residuals, i.e. outliers. Put simply, it is a measure of the e↵ect of the deletion of a given observation

upon the overall regression model.
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Figure 5.6: A matrix of regression plots and R2 values of these linear regressions
between some of the environmental parameters used in multiple regression models.
Font size in R2 values scales with the strength of the relationship, with a negative R2

value describing a negative correlation. Histograms for each variable describe frequency
distributions in each case.

all size fractions; R2(adj.) = 59.7%, Table 5.3) or sensu lato data only (all size fractions;

R2
(adj.)= 53.5%, Table 5.5), suggesting there is some influence of morphotype that is

not in itself statistically detectable. This improved fit of sensu stricto data to

environmental parameters compared to sensu lato is despite there being no significant

di↵erence in B/Ca (paired two-tail t-test, p=0.520, n=10) between the two

morphotypes where both G. ruber sensu stricto and sensu lato were measured from

the same site and in the same size fraction.
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Linear Model:

Estimated
Coe�cient

Std. Error t p

(Intercept) -432.626 104.777 -4.129 1.8 ⇥10�4 ***
PO3�

4 81.906 14.005 5.849 7.72⇥10�7 ***
Salinity 11.427 2.704 4.226 1.34 ⇥10�4 ***
Size 0.166 0.063 2.630 0.012 *
Bottom Water ⌦ 4.918 1.952 2.519 0.016 *
Temperature 0.980 0.586 1.673 0.102
B(OH)�4
DIC 707.540 438.534 1.613 0.115

Significance codes:
*** = 0.001 ** = 0.01 *= 0.05 . = 0.1

Residuals:
Min. 1st Quart. Median 3rd Quart Max.
-25.450 -8.408 -1.171 7.980 26.350

Residual standard error: 12.25 (d.f. = 40)
Multiple R2: 65.02% Adjusted R2: 59.77%

F-statistic: 12.39 p = 7.734 ⇥10�8

Table 5.3: Multiple linear regression statistics output from core-top and sediment
trap G. ruber (all sizes and morphotypes) once Eilat outliers were removed. Note

that temperature and B(OH)�4
DIC have no significant e↵ect on B/Ca ratios, but they are

left in for illustration, given their inclusion raises the model AIC. Omission of these
factors results in no change in the significance of the other factors, nor their relative

importance.

5.4.3 Changes in B/Ca with size

Just as morphotypes produced di↵ering strengths of regression model, G. ruber sensu

stricto and G. ruber sensu lato show di↵erent patterns with regards size-related

changes in B/Ca. Multiple regression models of G. ruber sensu stricto detect no

significant e↵ect of size on B/Ca; a point further illustrated by Figure 5.10. However,

incorporation of measurements in G. ruber sensu lato introduces a significant size

e↵ect (Tables 5.3, 5.5, Figs. 5.7, 5.9). This size-related change in B/Ca in G. ruber

sensu lato is shown in isolation in Fig. 5.11.



A Cautionary Tale: B/Ca ratios in G. ruber as a proxy for the carbonate system? 168

B(OH)4
-

%
 o

f R
2

0
10

20
30

40
50

60
70

Salinity[PO
4

3-] 'HHS�ȍ
CaCO

3

Size Temp.

DIC

*** *** * *

Figure 5.7: The relative importance of [PO3�
4 ], salinity, size, bottom water ⌦, size,

temperature and B(OH)�4
DIC as controls on residual B/Ca variability. Relative importance

is calculated as per Lindemann et al. (1980) using the ‘lmg’ method of Groemping
(2006), using ‘R’, with uncertainty on relative importance (at 2�) determined via 1000
bootstrap subsamples. Note that the overall R2

(adj.) of the model is 59.77%; the metrics

are normalised to sum to 100% of this R2. As in Table 5.3, *** indicates that a
factor is a significant contributor to the model to p < 0.001, while * indicates p <

0.05. Neither temperature nor B(OH)�4
DIC are statistically significant contributors to the
regression model.

5.5 Discussion

5.5.1 The e↵ect of the carbonate system on B/Ca ratios

These new data suggest that the marine carbonate system has very little influence on

B/Ca in open ocean samples of G. ruber, and that [PO3�
4 ], followed by salinity, are

instead the dominant controls. This is despite well-documented evidence from culture

(Sanyal et al., 1996, Allen et al., 2011, 2012, this study) that demonstrates the

importance of the carbonate system in determining boron incorporation. Therefore it

must be assumed that this is a result of the interaction of other competing factors.
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Linear Model:

Coe�cient Std. Error t p
(Intercept) -421.219 115.008 -3.663 1.45 ⇥10�3 **
PO3�

4 106.962 15.924 6.717 1.2⇥10�6 ***
Bottom Water ⌦ 6.725 2.009 3.347 0.003 **
Salinity 9.138 2.992 3.054 0.006 **
Temperature 2.410 0.831 2.899 0.009 **
B(OH)�4
DIC 1421.271 542.985 2.618 0.016 *

Size 0.104 0.067 1.560 0.134

Significance codes:
*** = 0.001 ** = 0.01 *= 0.05 . = 0.1

Residuals:
Min. 1st Quart. Median 3rd Quart Max.
-22.733 -4.644 -0.798 4.679 16.478

Residual standard error: 10.48 (d.f. = 22)
Multiple R2: 78.25% Adjusted R2: 72.04%

F-statistic: 12.59 p = 5.1 ⇥10�6

Table 5.4: Multiple linear regression statistics output from core-top and sediment trap
G. ruber sensu stricto (all sizes) once Eilat outliers were removed. Note that size has
no significant e↵ect B/Ca ratios, but it is left in the model for illustration, given that its
inclusion does not detrimentally a↵ect the model’s AIC. Omission of test size produces

no change in the significance of the other factors, nor their relative importance.

Multiple regression in G. ruber sensu stricto only does detect a small but statistically

significant (to 95% confidence) e↵ect of
B(OH)�4
DIC on B/Ca, but when combined with

data from G. ruber sensu lato this e↵ect disappears (note that inclusion of pH or
B(OH)�4
HCO�

3
in lieu of

B(OH)�4
DIC has no bearing on this finding). Clearly this could well

preclude the use of B/Ca for palaeo-pH and palaeo-CO2 reconstruction.

However, while the carbonate system cannot be considered a strong control on B/Ca

in open ocean samples, in all cases multiple regression models were more powerful (i.e.

had a higher R2
(adj.)) when the residuals from the culture

B(OH)�4
DIC -B/Ca relationship

were analysed in lieu of raw B/Ca ratios: sensu stricto R2
(adj.) 74.02% ! 74.79%, sensu

lato R2
(adj.) 53.5% ! 62.73%, both R2

(adj.) 59.77% ! 64.76%. This implies that the

carbonate system does have some underlying influence on B/Ca ratios that is obscured

by conflicting factors. It should be noted, though, that analysis of these residuals

rather than B/Ca did not a↵ect which of environmental parameters proved to be

controls, nor the relative importance of these factors, except in the case of G. ruber
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Figure 5.8: The relative importance of [PO3�
4 ], salinity, bottom water ⌦, temperature,

B(OH)�4
DIC and size as controls on residual B/Ca variability in G. ruber sensu stricto

. Relative importance is calculated as per Lindemann et al. (1980) using the ‘lmg’
method of Groemping (2006), using ‘R’, with uncertainty on relative importance (at
2�) determined via 1000 bootstrap subsamples. Note that the overall R2

(adj.) of the

model is 72.04%; the metrics are normalised to sum to 100% of this R2. As in Table
5.4, *** indicates that a factor is a significant contributor to the model to p < 0.001,
** indicates significance to p < 0.01, while * indicates p < 0.05. Note also that size

does not contribute significantly to the regression model.

sensu lato , where size was no longer found to be a significant contributor in multiple

regression analysis of residual B/Ca. No notable di↵erence arose from using the

residuals from the
B(OH)�4
DIC -B/Ca of G. ruber (pink) (Allen et al., 2012).

Although carbonate system control in B/Ca is not clearly evident in numerous other

open ocean planktic foraminifera (see Allen and Hönisch, 2012, for review), B/Ca

ratios in N. pachyderma do appear to show a correlation with
B(OH)�4
DIC (Yu et al.,

2013). It is unclear why boron incorporation in open oceanN. pachyderma might be

carbonate-system-dependent, but boron incorporation in G. ruber is not. It is possible

that the presence of symbionts in G. ruber may dampen the e↵ect of ambient
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Linear Model:

Coe�cient Std. Error t p
(Intercept) -394.433 154.799 -2.548 0.026 *
PO3�

4 82.520 26.737 3.086 0.009 **
Salinity 11.552 4.046 2.855 0.014 *
Size 0.263 0.113 2.331 0.038 *

Significance codes:
*** = 0.001 ** = 0.01 *= 0.05 . = 0.1

Residuals:
Min. 1st Quart. Median 3rd Quart Max.
-25.558 -6.004 -0.499 5.086 24.025

Residual standard error: 12.4 (d.f. = 12)
Multiple R2: 62.8% Adjusted R2: 53.5%

F-statistic: 6.753 p = 0.0064

Table 5.5: Multiple linear regression statistics output from core-top and sediment trap
G. ruber sensu lato (all sizes) once Eilat outliers are removed. Note that temperature,
B(OH)�4

DIC and bottom water ⌦ are not significant contributors, and indeed these are
removed via stepwise model selection, as to include them results in inferior AIC values.

.

carbonate system changes upon the microenvironment of the foram (and hence B/Ca).

This is supported by the lower-than-expected pH-sensitivity seen in G. ruber (see

Chapter 3). However, preliminary investigations in G. bulloides (also a

symbiont-barren species) currently in preparation has revealed similar controls (namely

salinity and phosphate) in this species (Henehan et al., in prep.). Since correlation

between B/Ca and
B(OH)�4
DIC in this data set is perhaps not unassailable (R2= 44%,

calibration data are largely within quoted 5% analytical uncertainty of each other, and

carbonate system parameterisation relies on somewhat sparse GLODAP

measurements), more measurements, including analyses from towed samples where the

in situ carbonate system is well characterised, might prove valuable.

5.5.2 [PO3�
4 ]: a previously overlooked control on B/Ca ratios

The positive correlation between phosphate concentrations ([PO3�
4 ]) and B/Ca seen in

these core-top data is the first suggestion of [PO3�
4 ] being relevant to foraminiferal

B/Ca ratios. The root cause of this phosphate correlation, however, is unclear. It is
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Figure 5.9: The relative importance of [PO3�
4 ], salinity and size as controls on B/Ca

ratios in G. ruber sensu lato . Relative importance is calculated as per Lindemann
et al. (1980) using the ‘lmg’ method of Groemping (2006), using ‘R’, with uncertainty
on relative importance (at 2�) determined via 1000 bootstrap subsamples. Note that
the overall R2

(adj.) of the model is 53.5%; the metrics are normalised to sum to 100% of

this R2. Note also that temperature, B(OH)�4
DIC and bottom water ⌦ do not contribute

significantly to the regression model, and are removed from the model by stepwise
model selection due to their detrimental e↵ect on model AIC.

possible that the apparent influence of PO3�
4 on B/Ca is not as a direct result of any

interaction with biomineralisation processs, but rather it is a proxy for some other

hydrographic conditions that induce a vital e↵ect in foraminiferal B/Ca. For example,

areas of high PO3�
4 conditions are often associated with seasonal upwelling or deep

mixing, and may have higher levels of primary productivity (see Fig. 5.12). It is

possible that a more plentiful food supply in areas of high productivity may result in

higher growth rates, and that this in turn might induce some kind of vital e↵ect. This

might be supported by the finding that foraminifera grown in culture, where food was

o↵ered every day, have higher B/Ca than those grown in the open ocean (this study).

However, any mechanisms for an elevation of boron incorporation with enhanced

feeding rate are not clear. Higher feeding should result in higher respiration rates, and
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Figure 5.10: No significant, systematic change in B/Ca ratios with size fraction was
detectable in G. rubersensu stricto measured from a number of sites. Y-error bars are

5% analytical uncertainty.

hence acidification of the foraminiferal microenvironment and reduction in
B(OH)�4
DIC

(Zeebe et al., 1999a), which should reduce B/Ca. Furthermore, light attenuation is

greater in areas of higher productivity, which would suggest that the bu↵ering of the

microenvironment of G. ruber by photosynthetic symbionts should be less e↵ective,

and should again result in lower
B(OH)�4
DIC in these high productivity regions.

Alternatively, the observed correlation between B/Ca and [PO3�
4 ] may be due to

inorganic processes. Phosphorous compounds are known to interact with CaCO3 in

seawater and are readily incorporated into, and adsorbed onto, CaCO3, with

incorporation rate dependent on ambient [PO3�
4 ] (Berner and Morse, 1974, Ishikawa

and Ichikuni, 1981). Phosphorous compounds have also been known to retard CaCO3

nucleation (Simkiss, 1964, Pytkowicz, 1973) and precipitation (Reddy, 1977, Kitano

et al., 1978b, Berner et al., 1978, Mucci, 1986, Burton and Walter, 1990) rates. The

possible e↵ect of phosphorous on boron incorporation, however, is unclear. Ruiz-Agudo

et al. (2012) hypothesise that one of the limiting factors on the incorporation of boron

is the time permitted for the re-coordination of tetrahedral boron to trigonal form, and
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Figure 5.11: Change in B/Ca ratios with size fraction was detectable in G. rubersensu
lato from multiple sites, and is likewise detected as a significant factor in multiple

regression analyses (Tables 5.3, 5.5). Y-error bars are 5% analytical uncertainty.

that at slower precipitation rates more boron can be incorporated in the crystal lattice.

As such the retardation of CaCO3 growth by ambient inorganic PO3�
4 may result in

higher B/Ca ratios. A decrease in shell weight in G. bulloides with ambient [PO3�
4 ]

(Aldridge et al., 2012), may constitute evidence for retardation of calcification in

foraminifera caused by PO3�
4 ion, although this finding may also result from

collinearity of [PO3�
4 ] and [CO2�

3 ] in this study (Marshall et al., 2013, see Appendix E

attached).

Alternatively, if P is incorporated into CaCO3 as orthophosphate (PO3�
4 ion), as

suggested by Ishikawa and Ichikuni (1981) and Mucci (1986), then it may be possible

that paired substitution is required to balance valency, and that boron may be

incorporated as a result. For example, 2(CO2�
3 ) might substitute for one PO3�

4 and

one B(OH)4� ion. While this too could explain the positive correlation between B/Ca

and [PO3�
4 ], it is not certain that PO3�

4 ion alone is the species incorporated into the



A Cautionary Tale: B/Ca ratios in G. ruber as a proxy for the carbonate system? 175

crystal lattice, with Burton and Walter (1990) suggesting HPO2�
4 may also be

incorporated, and Lin and Singer (2006) advocating CaHPO0
4(aq) instead. Regardless of

the form of P incorporated, however, it is likely that the reorganisation of such a large

molecule into the carbonate lattice would result in considerable disorder and an

increase in kink sites, where boron might more easily be incorporated (Hemming et al.,

1995). One possible problem with invoking a crystallographic cause for the observed

correlation between [PO3�
4 ] and B/Ca is that some other lines of evidence would

suggest that PO3�
4 might compete with B(OH)4� for incorporation sites. Both

molecules are thought to compete to incorporate in place of CO2�
3 ion (Ishikawa and

Ichikuni, 1981, Allen et al., 2012) and both B(OH)4� (Hemming et al., 1995) and

PO3�
4 (Dove and Hochella Jr., 1993, Berner and Morse, 1974) are incorporated into

growing crystal faces at kink sites. However, as aforementioned, it is possible that the

two ions are incorporated together in a paired substitution, or that the disruption of

the CaCO3 lattice by PO3�
4 ion creates binding sites for B(OH)4�.

Another alternative means by which phosphate may promote the incorporation of

boron is via the facilitation of amorphous calcium carbonate (ACC) formation. Dove

and Hochella Jr. (1993) note that the presence of PO3�
4 tends to result in rounded or

amorphous precipitation nucleii. Meanwhile, Bentov et al. (2010) and Hild et al.

(2008) show that organic phosphorous compounds promote the production of ACC,

and suggest that inorganic dissolved PO3�
4 may also play a co-operative role in the

stabilisation of ACC. Therefore, given that ACC more readily incorporates trace

elements (Bentov and Erez, 2006, Cusack and Freer, 2008), it is possible that enhanced

ACC formation may allow for greater incorporation of boron.

It is worth noting that pH-dependent changes in the speciation of P in culture

experiments (towards increasing abundance of orthophosphate ion with increasing pH;

Atlas, 1975, Zeebe and Wolf-Gladrow, 2001) might produce an apparent carbonate

system control, should orthophosphate (PO3�
4 ion) be the species incorporated into

CaCO3 (as suggested by Ishikawa and Ichikuni, 1981). In this way, changes in

carbonate system parameters might produce (or at least accentuate) changes in B/Ca

in culture, but in the open ocean where [PO3�
4 ] is controlled not only by pH-dependent

speciation, but also by nutrient cycling processes, this correlation is lost. Allen et al.

(2011) cite a mismatch between predicted and observed B/Ca in culture experiments

as evidence that “other pH-sensitive ions may be involved in calcification”. While



A Cautionary Tale: B/Ca ratios in G. ruber as a proxy for the carbonate system? 176

additional culturing experiments where aqueous [PO3�
4 ] is altered are required, it is

possible that PO3�
4 might be one such pH-sensitive ion.

5.5.3 Morphotype di↵erences in B/Ca controls

While G. ruber sensu lato is not significantly di↵erent in B/Ca from sensu stricto at

sites where both were analysed (section 5.4), regression models using sensu lato are

poorer in fit. Not only this, but salinity appears to be a relatively more powerful

control on B/Ca ratios in this group compared to [PO3�
4 ]. This poorer fit is likely the

result of either a) morphospecies-specific variability in boron incorporation or b)

uncertainty in the depth habit of G. ruber sensu lato.

While comparisons at core-top sites between two morphotypes reveal no o↵set, G.

ruber sensu lato is an umbrella term (from Wang, 2000) for what are in reality two

separate species: G. ruber pyramidalis and G. ruber elongatus (Aurahs et al., 2011).

In this study, both of these species were combined, but it is conceivable that these

groups di↵er in B/Ca. While no quantitative data as to the relative contributions of

these species were collected here, G. ruber pyramidalis was relatively more abundant

at sites where sensu stricto were absent (such as in higher-latitude, transitional

waters). In this way, sites where G. ruber sensu stricto was not present may have

comprised more G. ruber pyramidalis and produced more scattered data (thus

reducing the power of regression models of sensu lato). However, there is no

statistically significant di↵erence detectable between B/Ca measurements at sites

where sensu stricto were also present and those taken from higher-latitude waters

where it was not. Further investigation to ascertain the variability of the relative

contributions of G. ruber pyramidalis and G. ruber elongatus between sites, and

comparison of B/Ca values between these two morphotypes, would be beneficial, but

at present it seems that morphotype di↵erences within G. ruber sensu lato can not

easily explain the relatively higher residual scatter in this group.

It is possible that the poorer fit in G. ruber sensu lato is due to a deeper habitat in

this group. MOCNESS tows by Kuroyanagi and Kawahata (2004) found living G.

ruber sensu lato in abundance at depths of >50 m, while G. ruber sensu stricto was

only abundant in surface waters. This deeper habit is corroborated by lower

reconstructed temperatures in G. ruber sensu lato noted by Wang (2000), Löwemark
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Figure 5.12: A demonstration of the coincidence of areas of high primary productivity
in areas where [PO3�

4 ] is high. The upper plot was produced from World Ocean Atlas
(Garcia et al., 2010) and the lower was produced at NASA’s OceanColour Web. Colour

scales are given in each plot.

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
http://oceancolor.gsfc.nasa.gov
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et al. (2005), Kawahata (2005), Steinke et al. (2005, 2008). Although calculations of

pre-industrial pH used here rely on the Takahashi et al. (2009) surface water database,

if a similar surface-50m pH, temperature and salinity gradient at these sites (from

GLODAP (Key et al., 2004) and CARINA (Key et al., 2010) datasets) is assumed for

the pre-industrial, one may apply this o↵set to reconstructed pre-industrial surface

values. Fitting of a regression model to sensu lato data with conditions at ⇠50m depth

(Table 5.6), using 50m depth [PO3�
4 ] values from WOA (Garcia et al., 2010), improves

the fit considerably (R2
(adj.) = 65.41% vs. 53.5%), and puts [PO3�

4 ] over salinity as the

primary control in G. ruber sensu lato (Fig. 5.13). Testing residual B/Ca (removing

the
B(OH)�4
DIC -B/Ca relationship from culture, using

B(OH)�4
DIC estimated at 50m) results in

even stronger models for both sensu lato only (R2
(adj.) = 73.66%) and whole species

(R2
(adj.)= 70.43%) datasets when a depth habit of 50m is assumed (with [PO3�

4 ] and

salinity the only significant factors in both cases). However, further work is needed to

validate this assumption. Such depth segregation between morphotypes may not

always be present, with Kuroyanagi and Kawahata (2004) observing contrasting

patterns between sites, and Mohtadi et al. (2011) prescribing only a slightly more

uncertain depth habitat in G. ruber sensu lato compared to G. ruber sensu stricto (as

inferred from Mg/Ca and �18O). In addition, in the Gulf of Aqaba (Eilat) both

morphotypes were found in tows from <10m depth (this study). One final problem

with assuming such a deep habitat for G. ruber sensu lato is that no di↵erence in �11B

is observed between sensu stricto and sensu lato where these two species co-habit

(Henehan et al., 2013); if sensu lato were to live at such depths, lower light levels

should result in a reduction in symbiont photosynthesis and thus a less pronounced

vital e↵ect in �11B (as in O. universa; see Chapter 4). Clearly, then, further work is

required to determine the drivers of B/Ca di↵erences in these morphotypes.

5.5.4 The influence of salinity on foraminiferal B/Ca

Open ocean data presented here support the findings of Allen et al. (2011, 2012) that

salinity is positively correlated with B/Ca in G. ruber, although the slope of this

relationship seen here (m = 12.46) is greater than that seen in G. ruber (pink) (m =

4.5; Allen et al., 2012). Notably, even when the e↵ect of
B(OH)�4
DIC from culture is

stripped from the data and residual B/Ca is tested, salinity remains a significant

control: the e↵ect of salinity appears greater than its influence on
B(OH)�4
DIC alone
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Figure 5.13: Assuming a habitat depth of 50m for G. ruber sensu lato , the relative
importance of [PO3�

4 ] in controlling residual B/Ca variability (once the known rela-

tionship between B/Ca and B(OH)�4
DIC from cultures is removed) is increased. Relative

importance is calculated as per Lindemann et al. (1980) using the ‘lmg’ method of
Groemping (2006), using ‘R’, with uncertainty on relative importance (at 2�) deter-
mined via 1000 bootstrap subsamples. Note that the overall R2

(adj.) of the model is

65.41%; the metrics are normalised to sum to 100% of this R2. Note also that size,

temperature, B(OH)�4
DIC and bottom water ⌦ do not contribute significantly to the re-

gression model, despite the relative importance metric suggesting B(OH)�4
DIC is the third

most important factor. Significance codes are as in Table 5.6: ** = p < 0.01, * = p <
0.05, . = p < 0.1.

(again, corroborating Allen et al., 2011). However, it is not clear whether this is due to

the e↵ects of elevated [B]sw (as suggested by Allen et al., 2011), or a more direct e↵ect

of higher salinity and ionic strength (as seen in Kitano et al., 1978a). Higher ionic

strength will raise the activity of molecules involved in biomineralisation, for example.

In addition, should [PO3�
4 ] play a role in crystal growth and boron incorporation,

higher salinity (and thus ionic strength) will alter the speciation of aqueous

phosphorous compounds (Atlas, 1975).
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Linear Model

Coe�cient Std. Error t p
(Intercept) -482.750 185.026 -2.609 0.031 *
PO3�

4 63.017 15.649 4.027 0.004 **
Salinity 13.467 5.074 2.654 0.029 *
Size 0.289 0.127 2.270 0.053 .
Bottom Water ⌦ 8.793 6.593 1.915 0.092 .
Temperature -1.477 0.834 -1.771 0.115
B(OH)�4
DIC 501.257 410.664 1.221 0.257

Significance codes:
*** = 0.001 ** = 0.01 *= 0.05 . = 0.1

Residuals:
Min. 1st Quart. Median 3rd Quart Max.
-15.576 -5.523 2.491 4.425 12.795

Residual standard error: 11.05 (d.f. = 8)
Multiple R2: 80.24% Adjusted R2: 65.41%

F-statistic: 5.413 p = 0.016

Table 5.6: Multiple linear regression statistics output from core-top and sediment
trap G. ruber sensu lato (all sizes) once Eilat outliers were removed, assuming a depth
habitat in G. ruber sensu lato of 50 m. Note that temperature, size, deepwater ⌦

and B(OH)�4
DIC have no significant e↵ect on B/Ca ratios at 95% confidence, but they are

left in for illustration, and since stepwise model selection does not remove them from
the model on the basis of AIC. Omission of these factors results in no change in the

significance of the other factors, nor their relative importance.

.

It is di�cult (at least within the range of environmental parameters studied here) to

quantify accurately the relative importance of salinity compared to other variables

(e.g. [PO3�
4 ]). Although in most cases salinity appears to be a secondary control

behind [PO3�
4 ], in G. ruber sensu lato the dominance of [PO3�

4 ] is less clear (not least

due to the smaller number of sensu lato measurements). Should G. ruber sensu lato

inhabit a deeper depth habitat (see section 5.5.3), however, this strong salinity

influence is diminished and [PO3�
4 ] again becomes the dominant control in this group

(see Fig.5.13). As a result of this uncertainty in depth habit, and the smaller number

of sensu lato measurements, it is as yet di�cult to express these factors in the form of

a multivariate regression equation (which might, if well defined, be useful in

palaeo-reconstructions). To this end, further culturing work, varying both salinity and

phosphate, would be beneficial.
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5.5.5 The influence of size-fraction on G. ruber B/Ca ratios.

Although its contribution to the regression model for all morphotypes (Table 5.3) is

statistically significant, this is driven only by size-related changes in G. ruber sensu

lato . In G. ruber sensu stricto , no change in B/Ca is seen with size (R2= 0.02 %,

Fig. 5.10). Given that size fraction e↵ects have previously been noted in G. ruber

(white) (Ni et al., 2007), this lack of size fraction e↵ect seen here in G. ruber sensu

stricto B/Ca ratios might be considered surprising. However, examining the data of Ni

et al. (2007), much of the trend in B/Ca with size is driven by G. ruber (pink). In G.

ruber (white), apart from relatively lower B/Ca ratios in samples < 250 µm, values of

B/Ca are invariant: Ni et al. (2007) observe no trend outside of analytical uncertainty

between 280 and 390 µm in diameter. Here, G. ruber sensu lato show a similar slope

in B/Ca with size (m=0.25) as in G. ruber(pink) analysed by (Ni et al., 2007,

m=0.23). This similarity is striking, and merits further investigation.

The mechanism by which G. ruber sensu lato and G. ruber sensu stricto may

demonstrate di↵ering trends in B/Ca with size are unclear. It is possible that both G.

ruber (pink) and sensu lato may deposit a greater proportion of gametogenic (GAM)

calcite than G. ruber sensu stricto , causing intratest heterogeneity, and prompting

dissolution trends in a similar way to those seen in G. sacculifer (see Ni et al., 2007,

Seki et al., 2010, Coadic et al., 2013). However, post-mortem dissolution seems

counter-intuitive given the lack of significant e↵ect of deep-water ⌦CaCO3 in G. ruber

sensu lato (see Table. 5.5; though this parameter may not be an ideal measure of

dissolution pressures, see Section 5.5.6). Instead it is possible that sensu lato grow

larger in times of upwelling or deep mixing (conditions which they are thought to

favour; Wang, 2000), such that larger foraminifera also saw higher [PO3�
4 ]. Such an

explanation would not explain similar trends in G. ruber (pink), however, given that

this species is most commonly found in the extremely oligotrophic Caribbean sea.

Moreover, the lack of similar patterns in �11B (Henehan et al., 2013) is puzzling.
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5.5.6 Deepwater ⌦: assessing the evidence for a dissolution e↵ect of

B/Ca

While ⌦CaCO3 at the site of deposition has been shown elsewhere to e↵ect B/Ca ratios

in G. sacculifer (Seki et al., 2010, Coadic et al., 2013), it accounts for a very small

percentage of the variation seen in the coretop G. ruber data presented here (at least

within the range of ⌦CaCO3 tested: 0.9<5.2). If this lack of a dissolution e↵ect is

reliable, it would support G. ruber ’s being a preferable candidate for the application of

boron-based proxies, in agreement with Seki et al. (2010). This apparent resistance to

loss of B via dissolution may be due to the homogeneity of G. ruber compared to G.

sacculifer, given a lack of gametogenic calcite in G. ruber (Caron et al., 1990).

However, it might be that dissolution upon deposition is controlled not only by the

saturation state of the waters above the sediments, but by processes within the

sediments, such as the supply of organic matter to sediments or the degree of

bioturbation (see Peterson and Prell, 1985, Schulte and Bard, 2003, Hönisch and

Hemming, 2004), and as such this analysis cannot properly account for it.

Furthermore, all core-top samples were taken from within the top 1cm of sediment,

and as such it should still be noted that corrosion from porewaters deeper within

sediments may still have some e↵ect on B/Ca that cannot be explored here, and that

must still be borne in mind when approaching down-core records.

5.5.7 Unusual conditions in Eilat

As discussed in Section 5.4, core-top data from the Gulf of Aqaba (Eilat) were removed

from analyses as outliers. While salinity in Eilat is very high, core-top G. ruber from

this site do not show the same elevated B/Ca as would be expected from the

B/Ca-salinity relationships of Allen et al. (2012), or from the trends in other core-top

data (Fig. 5.5). Since the salinity experiments of Allen et al. (2012) reach salinities

comparable to Eilat and see a rise in B/Ca as a result, it is not merely that the

relationship with salinity is non-linear. As yet this discrepancy is di�cult to explain, in

light of a lack of any similar discrepancy in �11B in G. ruber (see Chapter 3). It is not

an artefact of preservation, as tows of G. ruber from the Gulf recorded similar B/Ca

ratios as specimens from sediments. It is possible that [PO3�
4 ] and salinity a↵ect B/Ca

ratios synergistically (for example by changes in salinity/ionic strength influencing
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aqueous P speciation Atlas, 1975), but that this interaction was not distinguishable

within the limited range of these parameters examined for G. ruber. If salinity were to

have a greater e↵ect at higher [PO3�
4 ], for example, the low [PO3�

4 ] seen in the Gulf of

Aqaba (Eilat) may mean that the e↵ects of high salinity at this site are dampened. At

this juncture, however, these data remain unexplained, and require further

investigation in future trips to Eilat.

5.6 Conclusions

This study constitutes the first combined culture and in situ open-ocean calibration

study for B/Ca ratios in G. ruber, and highlights that the strong response of B/Ca to

carbonate system changes that is seen in culture is not reproduced in the open ocean.

The finding that B/Ca in G. ruber in the open ocean is not predominantly controlled

by pH,
B(OH)�4
HCO�

3
or

B(OH)�4
DIC , but by [PO3�

4 ] (hitherto unnoted) and salinity (supporting

Allen et al., 2011, 2012), has implications for palaeo-application, as it implies that

B/Ca ratios are not a reliable recorder of past carbonate system conditions. While the

absence of the clear relationships seen in culture in open-ocean samples is puzzling, it

is possible that the changing speciation of phosphorous compounds in culture pH

experiments (Atlas, 1975, Zeebe and Wolf-Gladrow, 2001) may drive (or at the very

least accentuate) changes in B/Ca (should orthophosphate ion be incorporated into

CaCO3, as in Burton and Walter, 1990, Mucci, 1986, Ishikawa and Ichikuni, 1981). In

the open-ocean, however, where [PO3�
4 ] is influenced by other factors besides pH, this

carbonate system correlation is obscured.

These data support the findings of Allen et al. (2011, 2012) that temperature does not

significantly a↵ect B/Ca in G. ruber. Downcore correlations between Mg/Ca and

B/Ca (e.g. Wara et al., 2003, Yu et al., 2007b) may arise via other means, for example

as a result of a common salinity e↵ect on B/Ca (Allen et al., 2011, 2012, this study)

and Mg/Ca (Kisakürek et al., 2008) ratios. Deepwater ⌦CaCO3 was not seen to have a

strong influence on B/Ca ratios in G. ruber (as least within the range of ⌦CaCO3

studied), unlike in G. sacculifer (Seki et al., 2010, Coadic et al., 2013), suggesting that

at least for this species post-mortem alteration does not cloud primary signals. In

addition, no clear size fraction e↵ect was observed for G. rubersensu stricto, despite
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the change in micro-environment pH (and thus
B(OH)�4
DIC ) with size implied by �11B

(Henehan et al., 2013).



Chapter 6

Synthesis

6.1 Thesis Summary/Chapter Synopsis

To summarise, this thesis has made a number of novel contributions to the field of

boron isotope geochemistry. In chapter 3, pH sensitivity in the �11B of G. ruber was

calibrated for the first time, incorporating not just measurements from culture, but for

the first time combining these measurements with those from open-ocean samples from

tows, sediment traps and core-tops. In chapter 4, the symbiont-barren G. bulloides

and deep-dwelling symbiont-bearing O. universa are calibrated, providing insights into

the drivers of vital e↵ects in planktic foraminifera. In chapter 5, the drivers of B/Ca

ratios in open-ocean G. ruber are determined via statistical means, revealing that the

carbonate system is not a strong control on B/Ca ratios, and throwing considerable

doubt on its potential as a palaeo-environmental proxy.

6.2 Objectives met

6.2.1 Aim 1: Examining the sources of vital e↵ects, and lowered

pH-sensitivity, in foraminiferal �11B

The main goal of this PhD project was to determine the cause(s) of vital e↵ects in

planktic foraminiferal �11B. Through the comparison of the symbiont-bearing

surface-dwelling foraminifera G. ruber (Chapter 3) with the deeper-dwelling O.

185
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universa and the symbiont-barren G. bulloides (both Chapter 4), this PhD project

provides further evidence that the action of symbionts in the foraminiferal

microenvironment is key in determining both the direction and the magnitude of vital

e↵ects. Moreover, analyses of inorganic carbonate precipitates (Section 1.4.3), together

with the seemingly steeper pH-sensitivity seen in symbiont-barren species (Chapter 4),

suggests that photosynthetic symbionts may not only cause o↵sets in �11BCaCO3 from

the �11BB(OH)�4
, but they may also be the cause of the reduced pH-sensitivity of

�11BCaCO3observed in G. ruber, O. universa and G. sacculifer (Sanyal et al., 1996,

2001, Henehan et al., 2013).

This project has yielded unexpected results from the symbiont-bearing species O.

universa; namely that it records �11B that is lower than the �11B of ambient B(OH)4�

ion, not higher, as previous work would suggest (Sanyal et al., 1996, Zeebe et al.,

2003). Previous calibration by Sanyal et al. (1996) appears to be subject to an

interlaboratory bias. This is an powerful demonstration of the dangers of relying on

NTIMS calibrations that may be accurate in terms of slope (i.e. pH-sensitivity), but

whose position in terms of absolute �11B is not reliable. It also serves as a warning

when applying the boron isotope-pH proxy to extinct foraminifera, that

symbiont-bearing foraminifera do not necessarily produce �11B values above those of

ambient �11BB(OH)�4
: should their habitat depth extend to depths below their

photosynthetic compensation point, they may record low �11B values more typical of

symbiont-barren species.

6.2.2 Aim 2: Extending the applicability of the �11B-pH proxy

through species-specific calibrations

This PhD project has extended the applicability of the �11B-pH proxy both in

increasing the number of calibrated species available to palaeoceanographers, and in

investigating the possibility of using broad size-fractions in palaeo-applications

(thereby mitigating sample-size constraints that can otherwise prove prohibitive).

The calibration of G. ruber, thought to be the shallowest-dwelling of the tropical

foraminifera (Hemleben et al., 1989) and thus a better tool for reconstructing past

atmospheric CO2 levels, constitutes a major advance in boron isotope geochemistry

and palaeo-CO2 reconstruction. However, this species is restricted to low latitudes,
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and so the reappraisal of �11B-pH relationships in O. universa, and the first

characterisation of pH-sensitivity in a symbiont-barren species (G. bulloides), are

valuable in extending the geographical range of the boron isotope-pH proxy.

Finally, investigations into size-related changes in �11B revealed a significant size-e↵ect

in G. ruber. In contrast, no such e↵ect was discernible in O. universa or G. bulloides.

While it is possible that size-related changes in �11B do exist in symbiont-barren forms

like G. bulloides (as preliminary investigation in G. inflata suggest; see fig 4.9), trends

may be obscured by a large degree of residual scatter, and as such further investigation

is encouraged. In O. universa, however, no such scatter is observed, and the lack of

size-related �11B changes seems robust. While site-specific corroboration of this

observation is encouraged prior to downcore application, it seems that broad

size-fractions in O. universa may be pooled for analysis, thereby reducing the

sample-size restrictions that may often hinder application of the proxy.

6.2.3 Aim 3: Testing the applicability of the B/Ca proxy

This PhD project includes the first attempt to determine the controls on B/Ca ratios

in in situ open-ocean planktic foraminifera, and yields surprising results. Although in

culture B/Ca ratios in G. ruber were seen to be strongly influenced by the carbonate

system (as also observed by Allen et al., 2012), in the open ocean the e↵ect was

undetectable. Instead, B/Ca ratios appear to be controlled by a combination of

salinity and, more unexpectedly, [PO3�
4 ]. Although further work is needed to better

determine the relative importance of these two factors, and the specific mechanisms

through which they might control B/Ca ratios, the observation that B/Ca is not a

reliable recorder of past carbonate systems (at least in planktic foraminifera) is an

important one.

If boron incorporation in foraminifera is controlled mainly by crystal growth surface

processes, as the e↵ects of salinity and PO3�
4 might suggest, it may imply that

vacuolisation of seawater has limited e↵ect on boron systematics in foraminifera. If

incorporated boron is sourced not from the original vacuolised seawater (as implied by

Rollion-Bard and Erez, 2010, Rae et al., 2011), but rather as the growing crystal face

comes into contact with ambient seawater, it may explain how microenvironment
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e↵ects can be recorded in �11B even in the face of known elevation of internal pH.

Further research, is required before this may be fully understood, however.

6.3 Future work

6.3.1 Foraminifera

6.3.1.1 Culturing of planktic foraminifera

While this PhD project has gone some way to improving our understanding of planktic

foraminiferal vital e↵ects, it has also prompted some questions. Firstly, it is clear that

while most measurements of O. universa show a low level of residual scatter from the

calibration line (Fig. 4.6), one measurement of towed O. universa from the Gulf of

Aqaba (Eilat) records strikingly di↵erent �11B signals. It is important, therefore, that

this matter is investigated, lest this be an indicator of cryptospecies or biogeographic

variability. To this end, during an EU-funded research visit to the IUI, Eilat in the

Autumn of 2013, we will undertake investigations into the cause of this variability.

Namely, O. universa will be sampled from di↵erent depth habits, and will be cultured

under light and dark conditions to investigate the controls on �11B signals in this area.

Moreover, more detailed description of porosity and symbiont type will be undertaken,

with a view to understanding the morphospecies (Morard et al., 2009) and the

symbiont types (Shaked and Vargas, 2006) that are present in the Gulf of Aqaba

(Eilat). Similarly, discrete measurements of the three morphotypes outlined by

(Morard et al., 2009) would be desirable, particularly since cultures of O. universa

from Puerto Rico (Hönisch et al., 2003, B. Hönisch, pers. comm.), and therefore

presumably of the ‘Caribbean’ morphotype, appear to be o↵set from the calibration

presented in Chapter 4.

Secondly, (Lombard et al., 2009) suggest that rates of net photosynthesis in planktic

foraminifera should increase with temperature. Despite this, there is no clear

relationship between deviation from �11BB(OH)�4
and temperature in calibration

datasets of G. ruber (see Fig. 6.1) or O. universa (see Fig. 6.2). In light of this, we

will attempt to culture O. universa under di↵ering temperature conditions at the IUI,

Eilat, and investigate whether there are any discernible e↵ects on �11BCaCO3 .
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Figure 6.1: No correlation between the deviation from ambient �11BB(OH)�4
and

temperature in G. ruber, suggesting no discernible temperature dependence beyond its
documented e↵ect on pK⇤

B .
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Figure 6.2: No correlation between the deviation from ambient �11BB(OH)�4
and

temperature in O. universa, suggesting no discernible temperature dependence beyond
its documented e↵ect on pK⇤

B . Note that the datapoint from Eilat (23 �C) is not
included on this plot, because to do so would skew the regression unduly. In any case,

inclusion of this measurement weakens the R2 further.
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6.3.1.2 Culturing of benthic foraminifera

Because of the limited range in pH (and hence �11BB(OH)�4
) in the deep ocean, it is

di�cult to determine the pH-sensitivity of benthic foraminiferal �11B via in situ

calibration alone. While the data of Rae et al. (2011) agree well with the ambient �11B

of aqueous B(OH)4� (calculated using a 11�10KB of 1.0272, following Klochko et al.,

2006), they cannot, over such a limited range in aqueous �11BB(OH)�4
, conclusively

prove that pH-sensitivity in benthic foraminifera is equal to that of aqueous B(OH)4�.

Therefore culturing of symbiont-barren benthic foraminifera over a broader range in

ambient pH would be helpful in contributing to discussion of pH-sensitivity in biogenic

CaCO3.

6.3.1.3 B/Ca

The elevated B/Ca in epifaunal benthic foraminifera (Yu and Elderfield, 2007, Brown

et al., 2011, Rae et al., 2011) relative to planktic foraminifera is perhaps

counter-intuitive given the lower pH and
B(OH)�4
DIC in deep waters, and might imply

some species-specificity of biomineralisation pathways. However, if PO3�
4 were the

dominant control on foraminiferal B/Ca ratios, it would go some way to explaining the

elevated B/Ca of benthic foraminifera. PO3�
4 levels are much higher in bottom waters

than in surface waters, as a result of remineralisation of sinking organic matter, and

may be even higher still in sediments as a result of the remobilisation of inorganic

phosphates Froelich et al. (1979). Plotting benthic foraminiferal B/Ca ratios from

Cibicidoides wuellerstorfi (Yu and Elderfield, 2007, Brown et al., 2011, Rae et al.,

2011) against [PO3�
4 ] (Fig. 6.3) sees some overlap with the B/Ca-[PO3�

4 ] trend derived

from G. ruber, but the overall agreement in benthic foraminiferal B/Ca data with the

trend is poor, particularly at higher levels of [PO3�
4 ].

As shown in (Fig. 6.4), however, the degree of deviation from the G. ruber

B/Ca-[PO3�
4 ] trend is strongly correlated to salinity (R2 = 0.82). As such it seems

possible that a combination of PO3�
4 and salinity might also explain published benthic

data. Moreover, the correlation of residual variation with salinity is both stronger and

of steeper slope than the similar relationship in G. ruber. This might suggest that

salinity and phosphate a↵ect B/Ca in a synergistic manner, with B/Ca ratios more
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Figure 6.3: Some data from the benthic foraminifera Cibicidoides wuellerstorfi (taken
from Yu and Elderfield, 2007, Brown et al., 2011, Rae et al., 2011) shows consistency
with the B/Ca-[PO3�

4 ] relationship seen in G. ruber. However, some other factor is
clearly at work; there is considerable deviation from the G. ruber relationship (see Fig.

6.4 below).

sensitive to changes in salinity at higher [PO3�
4 ]. Such a finding might also explain

anomalous B/Ca ratios in G. ruber from the Gulf of Aqaba: while salinity is very high,

oligotrophic, low PO3�
4 waters may mean that the e↵ect of this high salinity is

dampened. The correlations seen elsewhere between benthic foraminiferal data and

�CO2�
3 (Yu and Elderfield, 2007, Brown et al., 2011, Rae et al., 2011) might well be at

least partly explained by the correlation of �CO2�
3 and salinity in each of these

datasets. While further culturing and core-top calibration (including data from O.

universa and G. bulloides) is required to more fully disentangle the e↵ects of these

factors, their relative importance, and possible interactions between the two, it may

well be that B/Ca ratios in both planktic and benthic foraminifera are controlled by

the same environmental variables (i.e. [PO3�
4 ] and salinity). If so, this would suggests

a universal abiotic control on B/Ca ratios in foraminiferal carbonates, more strongly

linked to crystal surface processes (as was previously advocated by Hemming et al.,

1995) than concentrations of aqueous B(OH)4� ion alone.

Clearly there is cause to pursue these lines of investigation further, as if such a
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Figure 6.4: Residual variation from the PO3�
4 relationship identified in G. ruber (Fig.

6.3) in Cibicidoides wuellerstorfi (Yu and Elderfield, 2007, Brown et al., 2011, Rae et al.,
2011) correlates strongly with salinity, and with a steeper slope than that seen in G.

ruber.

hypothesis were correct it would throw considerable doubt on the use of B/Ca as a

carbonate system proxy. As part of our next trip to Eilat in the Autumn of 2013, we

will grow planktic foraminifera under varying [PO3�
4 ] and salinity levels, varying

feeding rates and varying light levels, to investigate possible e↵ects on B/Ca ratios. In

this way we can directly test the e↵ects of P on boron incorporation in foraminiferal

tests, and test whether the correlation seen in core-top material is as a result of the

direct interaction of P at the crystal growth face, or whether factors such as food

availability (which may correlated with [PO3�
4 ] in the open ocean), and hence

metabolic rates, may be at play. In addition, similar statistical treatment to that

carried out for G. ruber (Chapter 5) will be applied to measurements of O. universa,

G. bulloides and G. inflata, to determine whether the controls are comparable. Beyond

this, culturing benthic foraminifera under di↵erent �[CO2�
3 ], salinity and nutrient

levels would be of great benefit, and allow us to better determine the controls on B/Ca

ratios in this group: in situ calibration studies to date are limited by the covariance of

carbonate system parameters with salinity and nutrient concentrations.
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6.3.2 Coccolithophore �11B and B/Ca

While foraminiferal carbonates are thought to be precipitated from vacuolised seawater

(e.g. Bentov et al., 2009), calcification in coccolithophores is more fully internalised: all

component molecules are transported to an internal coccolith vesicle via the Golgi

body (Young et al., 1999, and references within). Consequently boron incorporation

and boron isotope systematics in coccolithophores constitute an interesting contrast

with the boron systematics of foraminifera. Current modelled understanding of boron

incorporation in coccolithophores (Stoll et al., 2012) suggests boron di↵uses into the

cell as boric acid (as this form of boron is more prone to di↵usion through membranes

Dordas and Brown, 2000, 2001, Tanaka and Fujiwara, 2008). After equilibration in the

cytosol, the resultant boric acid then di↵uses into the coccolith vacuole, where it again

re-equilibrated to modified pH and is incorporated into coccolith calcite (see Fig. 6.5).

B(OH)3

B(OH)4
-

B(OH)3

Coccolith 
Vesicle

B(OH)3

B(OH)4
-

B(OH)4
-

Coccolithophore 
Cytosol

Seawater

Figure 6.5: Amodel for the incorporation of boron into coccoliths, based on sequential
di↵usion and re-coordination of boric acid. Modifed from Stoll et al. (2012).

Assuming boron substitutes into CaCO3 via substitution at the CO2�
3 site, B/Ca in



Synthesis 194

coccolith calcite should then vary with DIC concentrations in the coccolith vesicle, to a

degree that is dependent on the partition coe�cient (KD) for B. Meanwhile, �11B

should infer some information as to the pH of the coccolith vesicIe, given an estimate of

cytosol (e.g. Anning et al., 1996). Therefore, application of both of these geochemical

measurement techniques may provide some information as to biomineralisation

pathways in coccolithophores, and their vulnerability to ocean acidification stress

(Stoll et al., 2012). The only published measurements of B/Ca ratios in coccoliths

(Stoll et al., 2012) come from ion probe analyses, and reveal a high level of inter-strain

variation (from <10 - 60 µmol/mol), with faster-growing strains reporting higher

B/Ca. These authors highlight the need to develop boron isotope measurement

techniques in coccolithophores, to shed further light on biomineralisation pathways.
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Figure 6.6: B/Ca ratios in E. huxleyi, cultured across a range in pH. Observed ratios
were much lower than in previous studies (Stoll et al., 2012). Note that B/Ca increases
slightly with pH in nutrient-limited cultures, but decreases in unlimited (Redfield ratio)

nutrient conditions.

With this study in mind, a collaboration has begun between myself, Dr. Gavin Foster,

Mr. Oscar Branson (now University of Cambridge) and Prof. Heather Stoll (University

of Oviedo), to determine the relationship between ambient pH and coccolith �11B.

Emiliania huxleyi were cultured across a range in pH and nutrient availability,
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concentrated by centrifuge and freeze-dried. Due to the high organic content in the

resultant sample agglomerate, considerable research was required to ascertain the most

e↵ective cleaning method. Cleaning methods used by Stoll et al. (2012) were found to

be ine↵ective in this case, and so new methods were developed (detailed in Appendix

D). Samples were then dissolved in 0.5M HNO3, with an aliquot taken for trace

element analysis. While data collection is in progress, B/Ca ratios measured to date

are shown in Fig. 6.6. Observed boron concentrations are low (1.5 - 4 µmol/mol

B/Ca), but appear in nutrient-limited samples to increase with increasing ambient pH.

In contrast, in nutrient-unlimited samples (i.e. C, N and P, all present in Redfield

Ratio), B/Ca ratios show no such increase.
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Figure 6.7: �11B measurements from E. huxleyi, cultured across a range in pH. In
N-limited cultures, �11B does not increase with pH, suggesting that pH in the calcifying
vesicle remains constant regardless of ambient pH. Divergent values in P-limited and
nutrient-unlimited cultures suggest that calcifying vesicle pH is a↵ected by nutrient

availability.

Once B/Ca ratios were determined, boron was isolated using ion-specific resin (see

Section 2.2.2), and boron isotopes determined via MC-ICPMS (Section 2.4). Because

of the low boron concentrations seen in E. huxleyi, and thus the smaller sample sizes

(as little as < 1 ng in some cases) analytical reproducibility is rather poorer than in
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foraminiferal measurements (as much as ± 2 h). Nonetheless, it seems clear that

where all three pH treatments have been analysed for �11B (the low-N treatment; see

Fig. 6.7), there is no discernible change in �11BCaCO3 with change in ambient pH.

However, again, nutrient treatment appears to be key, with P-limited and

nutrient-unlimited samples showing very disparate �11B signals.

Since this work is still in progress, and more data is still to be collected, it is somewhat

premature to draw conclusions as to the significance of this data. Moreover, it will be

necessary to more fully investigate the reliability of measurements of B/Ca ratios at

such low [B] before trends in B/Ca data can be interpreted. That said, comparison

with the model of Stoll et al. (2012) does permit some tentative conclusions to be

drawn (see Fig. 6.8). For example, the low B/Ca ratios of these cultured

coccolithophores do seem to imply that coccolith vesicle pH in E. huxleyi is likely to be

variable, but low (< 7.6), and that coccolith vesicles probably contain variable, but

very high, concentrations of DIC (potentially exceeding 10,000 µmol/kg; see Fig. 6.9).

While perhaps surprising, these values are not inconsistent with published internal pH

estimates for coccolithophores (see Anning et al., 1996, and references within).

While further analyses and modelling is required to fully understand these data, they

constitute the first ever boron isotope measurements in coccoliths, and the first

analysis of B/Ca ratios in coccoliths via ICPMS. Although separation of coccolith

calcite from clay remains problematic (Minoletti et al., 2009), and thus the use of

coccolith calcite in palaeo-reconstructions, is still some way o↵, these data may yet

o↵er unique insight into the biomineralisation pathways of coccolithophores and their

potential vulnerability to ocean acidification.

6.3.3 Prospects for Analytical Advances

6.3.3.1 Sample Size Limitations: 1012⌦ resistors

As demonstrated in this thesis, the boron isotope-pH proxy has enormous potential.

However, to meet the practical demands of the palaeoceanographic community, and to

extend the proxy to low-[B] sample material like coccoliths, sample size constraints

must be eased. Despite considerable recent advances, one of the biggest problems with

the analysis of boron isotopes in foraminifera by MC-ICPMS remains the relatively
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Figure 6.8: Comparison of B/Ca and �11B variation with pH in Emiliana huxleyi with
model results from Stoll et al. (2012). Low B/Ca ratios fit best with a low, variable
pH and [DIC] coccolith vesicle. In panels referring to �11B, blue datapoints (and the
blue trendline) denote a full pH-range experiment at one nutrient treatment (low-N),
while the remaining red datapoints are at di↵erent nutrient conditions. Note for B/Ca

all data are marked in red, regardless of nutrient treatment.
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DIC (2200 µmol/kg) but a varying pH. The shaded region indicates the typical B/Ca
ratios observed in cultures of E. huxleyi. Model assumes a constant KD of 0.0005.

Modified from Stoll et al. (2012).

large sample size required. Depending on the typical [B] of the species and the size

fraction used, between 50 (Orbulina universa, >600 µm diameter) and 450

(Globigerina bulloides, 250-300 µm diameter) individual foram tests must be combined

to attain enough B to generate a strong 11B signal (typically 15-20 ng B translates to

600-800 mV at optimal stability). One of the reasons for this, discussed in detail in

(Rae, 2011, Chapter 3), is that below a threshold level (⇠ 100mV), Johnson noise

(background baseline noise) on the 1011⌦ resistor will contribute an increasingly

significant amount to the total uncertainty. Uncertainty (1 SE) resulting from Johnson

Noise (�JN is calculated via Equation 6.1 below, where k is the Boltzmann constant

(1.30 ⇥ 10�23 J K�1), R is the amplifier resistance, T is the operating temperature

(⇠300 �K), and t is the length of time taken for a measurement (125.82 s).

�JN =

r
4kRT

t
(6.1)
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One possible improvement in this area is the utilisation of 1012⌦ resistors. Given the

derivation of Johnson noise above (Equation 6.1) a decrease in the resistance

associated with amplifiers (R) by an order of magnitude should significantly reduce

Johnson Noise. These amplifiers have been installed at NOCS, and initial testing by

Rosanna Greenop has revealed a marked improvement in precision in small samples.

After some further testing, these amplifiers will soon be in operation at NOCS, and as

a consequence reproducibility of small samples is likely to improve in the near future.

6.3.3.2 Automation

Besides reducing sample size requirements, if we are to reach a point where boron

isotope measurements can be made on scales approaching that of stable oxygen and

carbon isotopes (see for example Zachos et al., 2008), sample throughput must be

improved. To this end, members of the B-Team at the NOC (Dr. Miguel-Angel

Mart́ınez-Bot́ı and Dr. Eleni Anagnostou) are currently working with ESI Instruments

to design an automated device to perform column chemistry. Although testing is still

in progress, this system could vastly improve the time-e�ciency of boron isotope

analysis and hence contribute significantly to a deeper understanding of carbon

cycle-climate dynamics.

6.4 Concluding Remarks

To conclude, this PhD project has made significant steps forward in extending the

applicability of the boron isotope-pH proxy, by contributing to our understanding of

the inorganic basis of the proxy, the causes behind (and variability in) foraminiferal

‘vital e↵ects’, and the mechanisms of boron incorporation in foraminiferal calcite. This

project will permit greater confidence in future reconstructions of palaeo-CO2, by

provision of accurate new species-specific calibrations, and new approaches for

uncertainty propagation. Through these improved estimates of past CO2 levels, we can

gain a greater understanding of the climate’s sensitivity to changes in greenhouse gas

concentrations, and of the role of CO2 in important climate transitions and events,

including the end-Cretaceous extinction, the Palaeocene-Eocene Thermal Maximum

and other Eocene hyperthermals, and the underlying rise in Eocene temperatures in
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the run up to the Middle-Eocene Climatic Optimum, as well as the Eocene-Oligocene

and Plio-Pleistocene transitions.
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a b s t r a c t

The boron isotope-pH proxy, applied to mixed-layer planktic foraminifera, has great potential for
estimating past CO2 levels, which in turn is crucial to advance our understanding of how this
greenhouse gas influences Earth’s climate. Previous culture experiments have shown that, although
the boron isotopic compositions of various planktic foraminifera are pH dependent, they do not agree
with the aqueous geochemical basis of the proxy. Here we outline the results of culture experiments on
Globigerinoides ruber (white) across a range of pH (!7.5–8.2) and analysed via multicollector
inductively-coupled plasma mass spectrometry (MC-ICPMS), and compare these data to core-top and
sediment-trap samples to derive a robust new species-specific boron isotope-pH calibration. Consistent
with earlier culture studies, we show a reduced pH dependency of the boron isotopic composition of
symbiont-bearing planktonic foraminifera compared to borate ion in seawater. We also present
evidence for a size fraction effect in the d11B of G. ruber. Finally, we reconstruct atmospheric CO2

concentrations over the last deglacial using our new calibration at two equatorial sites, ODP Site 999A
and Site GeoB1523-1. These data provide further grounding for the application of the boron isotope-pH
proxy in reconstructions of past atmospheric CO2 levels.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The boron isotope-pH proxy

The use of boron isotopes in surface-dwelling planktic for-
aminifera to reconstruct ocean pH, and hence past levels of
atmospheric CO2 (expressed as partial pressure: pCO2), offers
great promise (Foster, 2008; Hönisch and Hemming, 2005;
Hönisch et al., 2009; Palmer et al., 2010; Pearson and Palmer,
2000; Pearson et al., 2009; e.g. Sanyal et al., 1995). However,
because of the range of offsets from the boron isotope composi-
tion of ambient borate ion that has been reported to date in
planktonic foraminifera (Sanyal et al., 1996, 2001; Hönisch et al.,
2003; Hönisch and Hemming, 2004; Foster, 2008), application of
the proxy beyond those extant species with species-specific
calibrations requires further assumptions to be made. Clearly,

then, it is important to extend the range of planktonic forami-
niferal species for which empirical calibrations exist, and in doing
so better understand exactly how the observed offsets from
borate ion, known collectively as ‘‘vital effects’’, arise.

The boron isotope-pH proxy has a well-understood foundation
in inorganic chemistry that sets it apart from more empirically-
derived proxies (e.g. Li/Ca) and that, providing biological inter-
ferences are understood, should permit greater confidence in
boron-based palaeo-pH and -pCO2 estimates. This chemical basis,
summarised briefly here, is dealt with in more detail elsewhere
(Foster, 2008; Hemming and Hanson, 1992; Hemming and
Hönisch, 2007; Pagani et al., 2005; Rae et al., 2011; Sanyal et al.,
2000; e.g. Vengosh et al., 1991).

Boron has two stable isotopes, 11B and 10B (approximately 80%
and 20% of total B respectively), with isotopic composition
expressed in delta notation as d11B relative to NIST-SRM 951
boric acid (Catanzaro et al., 1970), where

d11B ¼
11B=10Bsample

11B=10BNISTSRM 951

#1

 !
$ 1000 ð1Þ
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Boron is present in seawater almost exclusively as either
tetrahedrally-coordinated borate ion, BðOHÞ4

#, or trigonally-
coordinated boric acid, B(OH)3, with the relative abundances of
these compounds dependent on pH (see Fig. 1A). Equilibration is
rapid (Zeebe et al., 2001) and described by the following disas-
sociation equation:

BðOHÞ3þH2O3BðOHÞ4
#þHþ ð2Þ

Associated with this equilibration is an isotopic fractionation,
described as

10BðOHÞ3þ
11BðOHÞ4

#311BðOHÞ3þ
10BðOHÞ4

# ð3Þ

where the equilibrium constant 11–10KB is defined in Eq. (4) below

11#10KB ¼
½11BðOHÞ3) $ ½

10BðOHÞ4
#)

½10BðOHÞ3) $ ½
11BðOHÞ4

#)
: ð4Þ

This constant is often termed a3–4 or aB (e.g. Rae et al., 2011)
but, following Klochko et al. (2006), we use 11–10KB here. This
equilibrium constant was derived experimentally by Klochko
et al. (2006) as 1.027270.0006 (in seawater and at 25 1C). This
value is in-keeping with the results of numerous independent
theoretical studies (e.g. Oi, 2000; Liu and Tossell, 2005; Zeebe,
2005; Rustad and Bylaska, 2007) advocating values in the range of
1.025–1.035. Given a value for 11–10KB, the isotopic composition of
both boron species in seawater varies predictably with pH (see
Fig. 1B). Correspondingly, pH can be calculated from the d11B of

either boron species, for instance for d11B of borate as

pH¼ pKn

B#log #
d11Bsw#d

11Bborate

d11Bsw#ð
11#10KB $ d11BborateÞ#1000ð11#10KB#1Þ

 !

ð5Þ

where pK*
B is the disassociation constant for boric acid at in situ

temperature, salinity and pressure (most commonly calculated as
per Dickson, 1990). d11Bsw is the isotopic composition of seawater
(39.61%; Foster et al., 2010), and 11–10KB is 1.027270.0006
(Klochko et al., 2006). Since only the charged borate ion is thought
to be incorporated into biogenic calcite (Hemming and Hanson,
1992; Hemming et al., 1995), the boron isotopic composition of
CaCO3 can be used to calculate ocean pH (as d11Bborate in Eq. (5))
provided any vital effects have been accounted for.

1.2. Calibration attempts to date

Culture studies are an important tool in calibrating
foraminifera-based proxies, allowing for manipulation of growth
conditions beyond the range seen in the modern oceans (e.g. Allen
et al., 2011). In the case of the boron isotope-pH proxy, attempts
have been made to calibrate the symbiont-bearing foraminifera
Orbulina universa (Sanyal et al., 1996) and Globigerinoides saccu-
lifer (Sanyal et al., 2001) across a range of pH (7.6–9). These
culture studies confirmed that the d11B of planktic foraminiferal
calcite is strongly dependent on pH, but also describe a weaker
sensitivity to pH in foraminiferal d11BCaCO3

compared to d11Bborate

(Fig. 2A). While these studies were pioneering, some uncertainty
still remains in the robustness of these relationships. For instance,
some carbonate system parameters during culture in these
studies are relatively poorly constrained (e.g. pH only determined
using NBS-buffer-calibrated electrodes, with the magnitude of
any correction to total scale greatly influencing conclusions to be
made: see Supplementary Fig. S1) and some experiments (e.g.
Sanyal et al., 2001) were performed at 10$ natural boron
concentration, introducing additional uncertainty by increasing
the buffering capacity of culture seawater and thus potentially
dampening ‘vital effects’ (Zeebe et al., 2003). Furthermore, limited
core-top calibration attempts by Foster (2008) (measured by
multicollector inductively coupled plasma mass spectrometry;
MC-ICPMS) suggested a stronger pH sensitivity in the d11B of G.
ruber and G. sacculifer (close to that of borate ion), leading to the
suggestion that these previous calibrations may have been com-
promised by analytical issues related to the analytical technique
used (negative ion thermal ionisation mass spectrometry; NTIMS;
e.g., Foster, 2008; Ni et al., 2010). Therefore, further culture
calibrations are required, both to corroborate previously reported
pH sensitivities and to extend the applicability of the boron
isotope-pH proxy to more species of foraminifera.

1.3. Presentation of species calibrations

The most common way to present boron isotope data from
cultured foraminifera is in terms of the observed d11B–pH
relationship (Fig. 2A). This, however, leads to difficulties in
comparing calibrations generated under differing temperatures
and salinities, where the value of pK*

B differs, introducing the need
for normalisation. For example, in Fig. 2A, calibration datasets are
normalised to our culture conditions (26 1C and 37.2 psu), based
on the change in aqueous d11Bborate expected if pK*

B were altered
to reflect these conditions. Similarly, application of these calibra-
tions to open ocean foraminiferal data must include some
correction for pK*

B differences between datasets.
Furthermore, in order to present boron isotope data in terms of

the observed d11B–pH relationship, it is necessary to characterise
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species’ d11B–pH relationships by forcing them to fit the general
equation for boron isotope–pH calculation (Eq. (5) above). This
can be done by incorporation of a constant offset or ‘vital effect’
termed ‘a’ into Eq. (5), such that d11Bborate ¼ d11BCaCO3

#a:

pH¼ pKn

B#log #
d11Bsw#ðd

11BCaCO3
#aÞ

d11Bsw#
11#10KBðd

11BCaCO3
#aÞ#1000ð11#10KB#1Þ

 !
ð6Þ

In addition, the fit of empirical data to an equation of this form
can also be optimised by altering the 11–10KB constant (Table 1;
Hönisch et al., 2007). The addition of an offset ‘a’ to an aqueous
d11Bborate–pH curve (Foster, 2008; as in Hönisch and Hemming,
2005), however, implies that any such ‘vital effect’ is constant across
a range of pH. Past modelling efforts (Zeebe et al., 2003) provide
some support for this argument, but it must be noted that no culture
calibration performed to date (our own included) shows a constant
offset from the 11#10KB of Klochko et al. (2006). In addition, any
optimisation of 11–10KB in tandem with an offset ‘a’, as used
by Hönisch et al. (2007) to characterise d11Bcarbonate–pH curves
of published empirical data, might be misconstrued as implying
11–10KB is not 1.0272, rather than that these empirical calibrations
exhibit pH sensitivities different from the pH sensitivity of d11Bborate.

Given these difficulties, we instead describe culture calibration
data following Foster et al. (2012). Similar to Rollion-Bard and
Erez (2010), who plot calculated pH vs. culture pH, this approach
involves a linear regression between aqueous d11Bborate (at in situ
conditions) and measured d11BCaCO3

(Fig. 2B). Given measured
d11BCaCO3

, one can use the appropriate calibration regression to
predict the value of ambient d11Bborate, which may then be
entered into the general Eq. (5) to calculate pH. On such cross-
plots, calibration data define straight lines with slopes (given as
‘m’, Table 1) reflecting the difference between the d11B–pH
sensitivity of d11Bborate and d11BCaCO3

. Transformations for rele-
vant existing calibrations are listed in Table 1. The slopes and
intercepts (given as ‘c’, Table 1) of these lines are independent of
pK*

B (and hence salinity, temperature and pressure), meaning that
culture and core top calibrations can be readily compared without
reference to in situ environmental conditions. In addition,
presentation of culture calibrations in this way allows for the
plotting of 95% confidence intervals using the York regression,
accounting for uncertainty in culture conditions and measure-
ment (Ludwig, 2003; York, 1968). This approach permits better
propagation of the uncertainty of culture calibrations into final
pH and pCO2 reconstructions, and confirms the observations of
Hönisch et al. (2007) that pH sensitivities seen in published
foraminiferal culture calibrations (Sanyal et al., 1996, 2001) are
within statistical uncertainty of the pH sensitivity of inorganic
CaCO3 derived by Sanyal et al. (2000). Given also the possibility
that species-specific offsets (i.e. the observed range in intercept

Table 1
Planktic foraminiferal and inorganic carbonate calibrations (York-fit regression statistics from Isoplot (Ludwig, 2003)).

Publication Carbonate type Coefficients of calibration d11Bborate ¼ ðd
11BCaCO3

#cÞ=m MSWDa pb

c 2s m 2s

Sanyal et al. (1996)c,d,e Orbulina universa 5 5.3 0.82 0.32 5.6 0.004
Sanyal et al. (2000)c Inorganic precipitates 7.1 3 0.75 0.15 0.118 0.73
Sanyal et al. (2001)c,d Globigerinoides sacculifer 6.7 3.3 0.85 0.19 1.05 0.3
This study Globigerinoides ruber 9.52 1.51 0.6 0.08 0.01 0.96

a MSWD¼Mean Square Weighted Deviation.
b p¼probability of fit at 95% confidence.
c pH measurements (from which d11Bborate is derived) come from NBS-buffer-calibrated electrode measurements, and are approximated to total scale by subtraction

of 0.14.
d Salinity assumed to be 35 psu.
e ‘Room temperature’ assumed to be 20 1C.

Fig. 2. Published planktic foraminiferal culture and inorganic precipitate experi-
ments, plotted in d11B–pH space (top panel) and in d11BCaCO3

#d11Bborate space
(bottom panel). Note that for the purposes of graphical representation, the data were
normalised to a d11Bsw¼39.61% (both panels), and to a temperature of 26 1C and a
salinity of 37.2 psu (the conditions of our culture calibration, top panel only). The
black line in d11B–pH space is the aqueous value of d11Bborate at these environ-
mental conditions, with the dotted lines representing the uncertainty on the value
of 11–10KB (0.0006) in seawater at 25 1C reported by Klochko et al. (2006). Coloured
calibration lines are best fits, varying 11–10KB and a from Eq. (6). The black line in
d11BCaCO3

#d11Bborate space (bottom panel) is a 1:1 relationship, i.e. a pH sensitivity
equal to that of borate ion. Calibrations are represented by the York regressions
calculated using Isoplot (Ludwig, 2003), with shaded areas representing 95%
confidence intervals for these regressions. Note that it was not possible to calculate
95% confidence intervals for the data of Rae et al. (2011) or Foster (2008) using this
method, as the spread in d11Bborate is insufficient, but they are included for
comparison, having been used elsewhere in downcore reconstructions. Carbonate
system parameters for Sanyal et al. (1996, 2000, 2001) are adjusted from NBS scale
to total scale by subtraction of #0.14. While this is no doubt more representative
than no correction at all, we emphasise that NBS-total scale conversions are not
necessarily universal and that the correction used is critical to the resultant slope
(see Supplementary Fig. S1). As such we emphasise that the Sanyal calibrations are
plotted more for comparison of trend than for comparison of exact positioning of
that trend on any one axis. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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on Table 1) may be partially due to inconsistencies in absolute
N-TIMS measurements between labs (as highlighted by
Hönisch et al., 2003; Ni et al., 2010; Rae et al., 2011), further
investigation into the species-specificity of these calibrations is
required.

2. Methods

2.1. Culture calibration

2.1.1. Sampling and culturing
Neanic (typically !250 mm in diameter) specimens of G. ruber

(white) were towed from depths of o10 m in the Gulf of Aqaba
between January and March 2010, at the Interuniversity Institute
of Eilat, Israel. Individual foraminifera were transferred to sea-
water collected at the site of plankton towing within 4–6 h of
capture, and kept under saturated light conditions at !23 1C until
fully recovered (i.e. floating, with a halo of spines and symbionts).
Those that did not recover fully were retained for boron isotope
analysis as ‘control’ tow samples, and used for mass-balance
corrections (as discussed later). Since traits used to distinguish
the morphotypes of G. ruber (sensu stricto/lato; Wang, 2000) are
often poorly developed in immature specimens (Aurahs et al., 2011),
no distinction could be drawn between morphotypes in culture. For
reference, G. ruber sensu lato made up 35–45% of the total iden-
tifiable population of G. ruber from tows and core-top sediment
in the Gulf of Aqaba. However, we see no difference in d11B (or
B/Ca) between these morphotypes in core top sediments (see
Supplementary Fig. S2).

Recovered foraminifera were transferred to sealed 100 ml
Erlenmeyer flasks filled with prepared filtered seawater (see
below). Foraminifera were removed daily, fed one newly-
hatched Artemia nauplius, observed and measured using a Zeiss
inverted light microscope. Condition and approximate symbiont
density was noted. In an attempt to avoid damage to the
foraminifera and increase the low acceptance rates typically seen
in cultured G. ruber (Spindler et al., 1984), thereby increasing
mass gain, Artemia were physically incapacitated prior to feeding.
Illumination was provided by a metal halide lamp (420 W,
OsramTM) at levels of 200 mmol photons m#2 s#1 (13 h light:11 h
dark), equivalent to irradiance at 15–20 m depth in the open
waters of the northern Gulf of Aqaba (Shaked and Genin, 2006).
Culture flasks were kept in water baths at a constant temperature
of 2670.5 1C.

Seawater was prepared in large batches to ensure consistency
across all flasks, with surplus for topping up stored in airtight
bottles in the dark at !4 1C. Salinity was reduced from !40.7 to
37 via addition of de-ionised water. Following other culturing
studies (e.g. Sanyal et al., 1996, 2001), pH was altered by
adjusting alkalinity via addition of NaOH or HCl. Culture experi-
ments were carried out at pH 8.17470.007, 7.89470.013, and
7.55470.013 (total scale; 2 se, n¼48–67). pH drift in culture
flasks was monitored periodically using a pH electrode calibrated
to NBS buffers, with individuals from flasks that experienced large
pH drift discounted (n¼5). Culture solution was sampled at the
beginning of each pH experiment, and a composite sample taken
from all flasks at the end of culturing. These water samples were
poisoned with 50 ml saturated HgCl2 solution and transported for
full carbonate system analysis at the UK Ocean Acidification
Research Programme (UKOARP) Carbonate Chemistry Facility, at
the National Oceanography Centre Southampton (NOCS). Nutrient
analyses were also undertaken to ascertain nitrate, nitrite, phos-
phate and silicate concentrations. NBS-scale pH measurements of
these composite samples taken in Eilat were consistently higher
than Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TAlk)-

derived total scale pH measurements by 0.21 pH units (see
Supplementary Fig. S3). As such, in-culture NBS-scale electrode
measurements could be used once corrected for this 0.21 pH
offset.

After gametogenesis (typically after 6–10 days in culture),
empty G. ruber tests were removed from culture flasks, rinsed in
de-ionised water, dried and weighed.

2.1.2. Mass balance calculations and estimates of growth rate
To correct for the chemistry of the test grown outside of

culture, a mass-balance correction was used, following Erez and
Luz (1983), Lohmann (1995) and Kısakürek et al. (2008, 2011).
Dried ‘control’ samples (i.e. G. ruber tests towed at the same time
as cultured material) were weighed on a microbalance, photo-
graphed and measured using Macnifications imaging software. A
size-mass relationship for all towed control samples was calcu-
lated, such that initial size measurements (maximum axis multi-
plied by its perpendicular axis) of foraminifera made immediately
prior to culturing could be used to estimate shell mass
(Supplementary Fig. S4). While organic matter was not removed
prior to weighing, calculation of CaCO3 mass via ICPMS (as per
Villiers et al., 2002) for a subset of samples gave consistent
results, suggesting organics did not significantly contribute to
dried shell mass. Best fit was via power-type regression, as noted
by Kısakürek et al. (2011) for G. ruber from Eilat. The relationship
is best defined by the equation mass¼803.65$ (product of
axes)1.957 (n¼112, R2¼0.75, po0.001). Note the exponential of
this relationship is the same as that defined by Kısakürek et al.
(2011).

The d11B and B/Ca of control G. ruber from each experimental
tow (n¼150–200) was then measured (see below for analytical
methodology). Assuming cultured individuals began with this
d11B and B/Ca, and using the size–mass relationship to estimate
the mass of calcite grown out of culture, a correction can be made
and the composition of the foraminifera grown during culture
calculated by

d11Bculture ¼#
d11Bmeasured#ðd

11Bcontrols $ PB
controlsÞ

PB
culture

ð7Þ

where d11Bmeasured is the measured boron isotopic composition of
the bulk material, and d11Bcontrols is the measured boron isotopic
composition of ‘control’ foraminifera towed at the same time as
those cultured. PB

controls and PB
culture are the proportions of boron in

the bulk material coming from the pre-culture and culture-grown
calcite respectively. These are calculated based on the B/Ca ratios
in the bulk material and in control specimens, and the proportion
of calcite mass grown in culture and out of culture, such that

PB
culture ¼#

B=Cameasured#ðB=Cacontrols $ Pmass
controlsÞ

B=Cameasured
ð8Þ

and PB
controls ¼ 1#PB

culture. Uncertainty on d11Bculture data was
calculated as two standard deviations of 10,000 Monte Carlo
simulations accounting for the uncertainty in the size:mass
relationship (Supplementary Fig. S4b), B/Ca measurements
(5% at 2s) and d11B measurements (from Eq. (9)).

2.2. Core-top calibration

2.2.1. Sampling
To compare the results of our culture calibration with for-

aminifera grown in natural conditions, we measured G. ruber from
globally distributed core-top sites from archives at Tübingen,
Germany and NIWA, New Zealand. Samples from NIWA were
verified as recent by way of 14C-dating (H. Bostock, pers. comm.),
while from the Tübingen repository only undisturbed multicore
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sediment containing Rose Bengal-stained living benthic forami-
nifera was selected. In addition, material from sediment traps in
the Cariaco Basin was used to further test for biases introduced
during sedimentation. This array of sites covered as broad a range
of in situ d11Bborate as possible for regions inhabited by G. ruber,
and serves to test for regional variations (as seen in Mg/Ca, Bolton
et al., 2011) that might stem from genotype differences (Darling
and Wade, 2008). The locations of these core-top and sediment
trap sites are shown in Fig. 3 (see also Supplementary materials).
Samples were also taken from a number of size fractions to
examine the influence of test size on measured d11B.

2.2.2. Carbonate system parameters
pH, temperature and salinity at the sediment trap site (Cariaco

Basin, collected January 2007) is interpolated from data from
December 2006 and February 2007, downloadable from http://
www.imars.usf.edu/CAR. pH was estimated for core-top sites
using surface water oceanographic data from the GLODAP
(Key et al., 2004), CARINA (Key et al., 2010) and Takahashi et al.
(2009) compendia (see Supplementary materials). First, regional
salinity-TAlk correlations were calculated from surface (o20 m)
GLODAP/CARINA measurements. Applying these correlations,
monthly-resolved values of salinity from Takahashi et al. (2009)
were converted to monthly TAlk estimates. Monthly temperature
was also taken from Takahashi et al. (2009). Pre-industrial pCO2

at each core-top site was estimated by applying ocean–
atmosphere DpCO2 from Takahashi et al. (2009) sites (corrected
for post-industrial changes in flux with reference to Gloor et al.,
2003) to a pre-industrial atmospheric pCO2 value. Where samples
were 14C-dated, the age-appropriate atmospheric pCO2 value was
taken from Lüthi et al. (2008), and references within. Where core-
tops were not dated, we assume an average late Holocene
(o4 kyr BP) value of 275 ppm. Combined with approximations
of typical local silicate and phosphate concentrations (from
GLODAP/CARINA measurements), monthly estimates of pH were
calculated using CO2sys.m (Van Heuven et al., 2011), and the
constants of Lueker et al. (2000), Lee et al. (2010) and Dickson
(1990).

2.3. Analytical techniques

2.3.1. Sample cleaning and preparation
Foraminiferal cleaning is largely as described in Rae et al.

(2011), in turn based on the approach of Barker et al. (2003).
Foraminifera were cracked open between two clean glass slides,
ultrasonicated and rinsed repeatedly with MilliQ ultrapure water
(18.2 MO) to remove clays. Culture, sediment trap and tow
samples, in agreement with other culturing studies (e.g. Russell

et al., 2004), were subject to intensified oxidative cleaning
(3$20–30 min treatments of 250 ml 1% H2O2þ0.1 M NH4OH4 at
80 1C) to account for the larger organic content. In core-tops,
oxidative cleaning was shorter (3$5 min) to minimise sample
loss. Samples were subject to a brief weak acid leach in 0.0005 M
HNO3 to remove readsorbed contaminants, before dissolution by
incremental addition of 0.5 M HNO3 (typically o100 ml).

An aliquot (!20 ml) of dissolved sample was taken for
elemental analysis, before the remaining sample was buffered
and boron separated from matrix using 20 ml-volume columns of
Amberlite IRA743 boron-specific resin (Kiss, 1988). Typical
column yields for boron are 499.9%, with an extra acid elution
step monitored for boron concentration to check elution effi-
ciency. All sample preparation work and column chemistry were
carried out in a dedicated flow hood within an over-pressured
clean lab fitted with boron-free HEPA filters, permitting typical
total procedural blanks of o20 pg.

2.3.2. MC-ICPMS and ICPMS
Samples were measured for boron isotope composition on

Thermo Scientific Neptune MC-ICPMS at the University of Bristol
(cultures, ‘control’ tows and GeoB-1523-1), and the University of
Southampton (core-tops and sediment trap) according to methods
described elsewhere (Rae et al., 2011; Foster, 2008). Repeat analysis
of a range of carbonate (including G. ruber, Supplementary Fig. S5)
and boric acid consistency standards (Supplementary Fig. S6)
reveals no significant differences between these laboratories.

External reproducibility of the MC-ICPMS d11B method (at 95%
confidence, 2s) is typically o0.25% on !1 mg of CaCO3 (sample
size requirement varies with [B]calcite, but in the case of G. ruber
equates to 75–100 tests of diameter 300–355 mm). Following Rae
et al. (2011), uncertainty on culture and tow data run at Bristol is
calculated as

2s¼ 1:7ðe#29½11B)Þþ0:31ðexp#0:75½11B )Þ ð9Þ

where [11B] is the intensity of 11B signal in volts. Uncertainty on
core-top and sediment trap data is similarly calculated, according
to the external reproducibility of repeat analyses of Japanese
Geological Survey Porites coral standard (JCP; d11B¼24.3%) at the
University of Southampton (Supplementary Fig. S7). This relation-
ship is described by.

2s¼ 1:87ðe#20:6½11B)Þþ0:22ðexp#0::43½11B )Þ ð10Þ

Trace element–calcium ratios (Mg, B, Al, Mn, Ba, Sr, Li, Na, Cd,
U, Nd, and Fe) were analysed using Thermo Element 2 ICP-MS at
the University of Bristol (cultures, down-core and control tows)
and the University of Southampton (core-tops and sediment trap).
Here, these data are only used to assess adequacy of clay removal

Fig. 3. Locations of core-top, tow and sediment trap samples used in this study. Filled circles are sites from which recent samples are measured (this study), while white
circles are core-tops from Foster (2008). Sites of down-core pCO2 reconstructions are marked by a grey square (GeoB1523-1) and white circle (ODP 999A: also the site of
core-top measurement; Foster, 2008).
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(Al/Cao100 mmol/mol; Rae et al., 2011), to generate down-core
temperature estimates (Mg/Ca; see Supplementary materials),
and to correct for boron incorporated outside of culture. A full
exploration of trace element data is beyond the scope of this
paper, and will follow in later publications.

2.4. Downcore application

2.4.1. Site and species selection
G. ruber white sensu stricto (300–355 mm) were picked from

sediments aged 0–30 kyr from core site GeoB1523-1, recovered
from the Ceara Rise in the western equatorial Atlantic (3.831N,
#41.621E) at a water depth of 3292 m. We use the previously
published age model for this site based on d18O (Gingele et al., 2000).

2.4.2. Temperature and salinity estimates
Estimates of sea surface temperature (SST) and salinity (SSS)

are required to calculate pH from d11B, as these parameters
influence pK*

B. It is important to note, however, that calculated
pH is only weakly dependent on these environmental parameters
(0.012 pH units/1C; 0.003 pH units/psu). For GeoB1523-1, SST was
reconstructed using the Mg/Ca ratio of G. ruber measured on an
aliquot of the same sample used for isotope measurement and the
generic SST calibration (Mg/Ca¼0.38$ exp[SST*0.09]) of Anand
et al. (2003). This is preferred over the species-specific calibration
as it better fits our dataset of 420 core-top measurements
(Henehan, unpublished data). As with Hönisch and Hemming
(2005), palaeo-salinity was estimated using the following equa-
tion:

SSS¼ SSSmodernþDsea-level=3800n34:8 ð11Þ

where Dsea-level is an estimate of sea-level change in metres,
3800 m is the average ocean depth, 34.8 is mean averaged
modern ocean salinity, and SSSmodern is the modern salinity at
the site of interest (from GLODAP; Key et al., 2004).

2.4.3. The second carbonate system parameter
Ocean pH is only one variable of the ocean carbonate system,

and to determine [CO2]aq and hence pCO2 using Henry’s Law,
another variable is required (Zeebe and Wolf-Gladrow, 2001).
The second variable chosen, TAlk, is calculated from estimated
palaeo-salinity (Hönisch et al., 2009; as per Palmer and Pearson,
2003), itself derived from Eq. (11) above, and a TAlk vs. SSS
relationship defined by modern ocean data from the equatorial
Atlantic (TAlk¼SSS$61.88þ162.66, R2¼0.88, po0.001; from
GLODAP; Key et al., 2004). However it is important to note that
the generated pCO2 estimate is determined largely by the recon-
structed pH, and TAlk has little control. For example, given a pH of
8.2 (and SST of 25 1C and salinity 35 psu) drastically increasing
TAlk from 2400 to 2600 mmol/kg—equivalent to the range mod-
elled by Hönisch et al. (2009) for the last 2 myr—only increases
reconstructed pCO2 by 24 ppm.

Given this reconstruction of TAlk and a d11B–derived pH, it is
possible to reconstruct the entire carbonate system using
CO2sys.m (Van Heuven et al., 2011). Given the modern disequili-
brium of surface waters above GeoB1523-1 (DpCO2 of
15–25 ppm; Takahashi et al., 2009), and a correction factor for
the pre-industrial DpCO2 in this region of 1.33 (derived from
Gloor et al., 2003), a correction for disequilibrium of #27 ppm is
applied in order to calculate atmospheric CO2 concentrations
from calculated aqueous pCO2. We apply a conservative approx-
imation of uncertainty on reconstructed aqueous pCO2 of 29 ppm.
This is a quadratic addition of the ranges of uncertainty in
reconstructed pCO2 that are produced via propagation of each
input parameter uncertainty in turn, namely the calibration
equation (uncertainty as in Table 1 and discussion below), d11B

measurement (!70.2%), and reconstructed salinity (71 psu),
TAlk (7100 mmol/kg) and temperature (71 1C).

3. Results

3.1. Culturing

Mortality was greatest at our lowest pH, with most individuals
surviving to gametogenesis in the two higher pH experiments
(54% and 64% at 8.174 and 7.894 pH respectively), but only 40%
surviving to gametogenesis at pH 7.554 (compared to pH in the
Gulf of Aqaba of !8.075). Note that while these values of
survivorship are low compared to cultures of other species,
G. ruber is notoriously difficult to culture (e.g. Hemleben et al.,
1987), and as such the observed high mortality is not unexpected.

Samples grown at low pH (7.554) were typically surrounded
by a much denser shroud of symbionts that often entirely
obscured the outline of the test (Fig. 4B). Also, at this low pH
individuals often lost most, or all, of their calcitic spines and fed
less frequently (every 3–4 days) using short, unsupported, pseu-
dopods. Larger tests across all pH treatments often showed a
proliferation of many small and/or kummerform chambers grow-
ing in unusual configurations. While unusual within the 300–
355 mm size range, it is not uncommon to find such growth
patterns in larger G. ruber (4400 mm) from core-tops, indicating
these forms are not simply a response to culture. At higher pH,
chambers were usually visibly more heavily calcified (Fig. 4C),
and growth rates were higher (see Table 2). At pH 7.554, tests
were visibly thinner and often possessed abnormally wide aper-
tures, with evidence in some cases that chambers may have been
partially dissolved or reabsorbed during ontogeny (see Fig. 4E).

3.2. MC-ICPMS results

The results of boron isotope analyses of culture, core-top, tow,
sediment trap and down-core samples (along with the relevant
mass-balance corrections in culture experiments) can be found in
the Supplementary materials. These data are plotted in
d11BCaCO3

#d11Bborate space (Fig. 5). The York-fit linear regression
of culture data produces a d11BCaCO3

#d11Bborate relationship
described by Eq. (12) below, with uncertainty (2s, 95%) on this
fit, accounting for error in analytical and in situ d11Bborate values,
shown as a shaded band.

d11Bborate ¼ ðd
11Bmeasured#9:5271:51Þ=ð0:6070:08Þ ð12Þ

The slope (i.e. pH sensitivity) of this culture calibration is
within uncertainty of existing culture and inorganic calibrations
(see Table 1), and is significantly lower than the theoretical pH
sensitivity of borate ion in seawater (as indicated by a slope
of o1). For comparison, towed ‘control’ specimens and core-top
specimens are also plotted. We see no discernible effect of
geographical location nor sample material type, suggesting that
sedimentation or regional differences do not influence recorded
d11B. Although these data are permissively in agreement with the
slope (i.e. d11B–pH sensitivity) of the culture calibration (a York
regression of the 300–355 mm size-fraction has a slope of
0.4570.25 at 95% confidence), there is a tendency towards lower
values of d11B than the culture calibration would predict in size
fractions smaller than !380 mm, and higher values in larger size
fractions (see Fig. 6). As such, and because the spread in pH in the
core-top samples alone is too small for a precise d11B–pH
calibration, we suggest modification of the culture calibration
equation to reflect the size fractions used down-core. Thus for the
commonly-used 300–355 mm size fraction a correction of #0.65
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(see Fig. 6) should be applied to the intercept value ‘c’ of the
culture d11BCaCO3

#d11Bborate relationship (Eq. (12))

d11Bborate ¼ ðd
11Bmeasured#8:8771:52Þ=ð0:6070:09Þ ð13Þ

Uncertainty on the intercept in this relationship is a quadratic
addition of two standard errors of the mean offset from culture in
300–355 mm fraction core-top samples and the uncertainty in the
original culture calibration York regression intercept. Similarly,
we suggest a correction of #0.83% for the 250–300 mm size
fraction, and #0.16% for samples of 355–400 mm. For other size
fractions the culture calibration may be corrected using the

relationship between test size and offset from culture in Fig. 6
(offset¼[0.005$ average size]#2.185, R2¼0.33), although the
narrow size range of G. ruber in core-tops and the large ratio
of analytical uncertainty to signal mean that the relationship
is not statistically robust, and as such wherever possible we
would advocate using size fractions tested here. Indeed, despite
the general similarity of size-fraction effects seen across our
sample sites (Supplementary Fig. S8), given the limitations of
our dataset, we encourage prior verification of the consistency of
this size fraction effect at the sites of any future down-core
reconstructions.

150 µm

100 µm 100 µm 

120 µm 150 µm

Fig. 4. Examples of foraminifera grown in culture: (A) healthy G. ruber at ambient pH, with symbionts spread out within a well-developed halo of spines; (B) foraminifera
grown under low pH (!7.55), with poorly developed spines and dense shroud of symbionts; (C) test grown at high pH (!8.17) showing erratic pattern of chamber
addition, also seen (albeit less frequently) at mid-range pH; (D) ‘Normal’ test of G. ruber, similar to those seen in sediment samples (e.g. Hemleben et al., 1989), as produced
in all three pH experiments; (E) test with large apertures and thinly calcified chambers that may be indicative of dissolution, as sometimes seen at low pH (!7.55). Note
that examples (C) and (E) are not representative of the whole experimental group, but are extremes picked for illustration purposes.

Table 2
Culturing and tows, Eilat.

Experiment Start/tow
date

pH
(total)

2se T S N
(cultured)a

N (grown and
GAM)b

Survivorship Mean
days in
culture

Mean
starting
diameter

Mean end-culture
diameter

Mass
for
analysis

Growth
rate

(1C) (%) c (lm)d (lm)d (lg)e (lg/day/
ind.)f

Culture 1 29/01/10 8.174 0.007 26 37.2 106 57 54 6 200.0 365.4 590 1.39
Culture 2 10/02/10 7.894 0.013 26 37.2 105 67 64 10 178.1 441.9 902 1.19
Culture 3 10/03/10 7.554 0.013 26 37.2 120 48 40 9 197.7 339.6 303 0.35
Tow 1 27/01/10 8.128 0.005 22 40.4
Tow 2 08/02/10 8.116 0.005 23 40.4
Tow 3 07/03/10 8.103 0.005 23 40.4

a Indicates the number of foraminifera grown at each pH treatment.
b Indicates the number of foraminifera that grew in mass during culture and underwent gametogenesis.
c The percentage of individuals cultured that grew and survived to gametogenesis in culture.
d As determined by micrometre and inverted light microscope.
e The total mass of calcite analysed via MC-ICPMS, of which 75–92% was grown in culture.
f Based on the pre-culture mass as estimated from the size–mass relationship in Supplementary Fig. S2 and the end-culture mass as weighed at the University of

Bristol, and represents the mean of the growth rates of each individual foraminifera per treatment.
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3.3. pCO2 reconstruction

The d11B of G. ruber from Site GeoB1523-1 are plotted in
Fig. 7A, along with the G. ruber data from ODP 999A for
comparison, from Foster (2008). The results of boron-based
pCO2 reconstruction at these sites are also plotted in Fig. 7B, with
the estimates from ODP 999A corrected using a pre-industrial
DpCO2 of #21 ppm calculated as discussed above. A cubic spline
was plotted using Analyseries (Paillard et al., 1996), and the
bounds of uncertainty (17 ppm: individual uncertainty of
29 ppm/O2) on this spline are shaded. For comparison, the data
are plotted with atmospheric pCO2 derived from ice cores (Lüthi
et al., 2008 and references within; Lourantou et al., 2010; ages
recalculated as per Lemieux-Dudon et al., 2010) and pCO2

reconstructed assuming a constant vital effect of 0.8% (as per
Foster, 2008). The mean deviation from atmospheric pCO2 mea-
surements from ice cores and those calculated from 999A and
GeoB1523-1 using our new calibration is #5 ppm, with a 2s of
719 ppm. All data may be found in the Supplementary materials.

4. Discussion

4.1. pH sensitivity of d11BG.ruber lower than d11Bborate

pH is clearly a strong control on d11B in G. ruber, yet these new
data do not fall on the predicted relationship of seawater borate
ion, as epifaunal benthic foraminifera do (albeit within a limited
range of d11Bborate; Rae et al., 2011). Specifically, our data lie
above the d11Bborate–pH curve, and show a pH sensitivity !40%
lower than that predicted for aqueous d11Bborate, confirming
previous observations in other symbiont-bearing planktonic spe-
cies (Hönisch et al., 2003; Sanyal et al., 2001, 1996) using NTIMS.
This suggests that, absolute values aside, relative changes in d11B
are still accurately described using N-TIMS (Foster et al., in
preparation). The causes of this deviation from the aqueous
geochemical basis of the proxy are potentially manifold. Previous
studies have ascribed a lower-than-predicted pH sensitivity in
d11B for (i) incorporation of B(OH)3 (Klochko et al., 2009);
(ii) elevated (compared to ambient) pH inside seawater vacuoles
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m = 0.60 ± 0.08 , c = 9.52 ± 1.51

Fig. 5. New culture calibration of G. ruber. The York-fit regression plotted using Isoplot (Ludwig, 2003), with dotted lines and grey band defining 95% confidence intervals
(mean standard weighted deviance (MSWD)¼0.01). X-error bars for core-top samples are 2 standard deviations of intra-annual variability in calculated monthly d11Bborate,
while for cultures the error represents 2 standard errors of the mean pH of all culture flasks, and for sediment trap samples it reflects the range of d11Bborate between Dec
and Feb 2007. Y-error in non-culture samples is the analytical reproducibility as calculated by Eq. (10). In cultured samples, error bars reflect 2 standard deviations of
10,000 Monte Carlo simulations that also incorporate the uncertainties in the size–mass relationship (see Supp. Fig. S4b) and reproducibility of boron isotope and B/Ca
measurements in ‘control’ pre-culture tows and bulk post-culture measurements.

Fig. 6. Offset of core-top, tow and sediment trap samples from our culture calibration, as a function of size fraction. Error bars in size-fraction refer to the sieve fractions, or
where available, two standard errors of the measured test diameter. Red markers indicate the mean value for the three most commonly used size fractions, with y-errors
corresponding to two standard errors of the mean offset. Dotted vertical line denotes the mean end-culture diameter. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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(Rollion-Bard and Erez, 2010); (iii) modification of the micro-
environment around the foraminifera by respiration, calcification
and photosynthesis (Hönisch et al., 2003; Zeebe et al., 2003); and
(iv) analytical issues relating to the NTIMS approach used in past
studies (Foster, 2008). These new results for G. ruber using MC-
ICPMS, where accuracy has been demonstrated (Ni et al., 2010),
show that analytical issues do not play a role in generating the
shallower pH sensitivity in planktic foraminifera. Offsets in
absolute d11B between NTIMS and MC-ICPMS of the order of 1–
2% are observed for a variety of foraminiferal species (e.g.,
Cibicidoides weullerstorfi; see Rae et al., 2011) but, as also sup-
ported by an ongoing interlaboratory comparison study (Foster
et al., in preparation), relative changes appear to be largely
reproducible between NTIMS and MC-ICPMS (e.g. Fig. 8 of Rae
et al., 2011). There currently appears to be little consensus
regarding the relative importance of the other three phenomena
proposed above to explain a shallower-than-predicted relation-
ship between d11B and pH. A key observation requiring explana-
tion is that all planktonic foraminiferal calibrations to date show
a pH sensitivity (slope ‘m’) within uncertainty of that seen
in inorganic precipitates (d11BCaCO3

¼ ! 0:75ð70:15Þnthe pH
sensitivity of d11Bborate; Sanyal et al., 2000). Similarly reduced
pH sensitivity is evident in the symbiont-bearing Amphistegina

lobifera (Rollion-Bard and Erez, 2010) and in numerous species of
coral (Anagnostou et al., 2012; Hönisch et al., 2004; Krief et al.,
2010; Reynaud et al., 2004; Trotter et al., 2011). That the
sensitivities observed in a broad range of biogenic carbonates
are similar to those seen in inorganic precipitates would implicate
an inorganic process—e.g., a rate dependency in CaCO3 precipita-
tion. However, the epifaunal benthic data of Rae et al. (2011)
(Fig. 2) and Yu et al. (2010) lie within uncertainty of the d11Bborate,
implying that either the agreement between the d11Bborate and
benthic foraminiferal carbonate is either purely fortuitous (the
result of a several competing processes operating in tandem to
cancel each other out), or that any inorganic process, if it exists, is
not universal and benthic foraminifera are the exception to the
rule. It is also worth noting that all the other foraminifera so far
calibrated are symbiont bearing, and laboratory observations
(Jørgensen et al., 1985; Köhler-Rink and Kühl, 2005; Rink et al.,
1998) would strongly implicate the alteration of the foraminiferal
microenvironment by symbionts and life processes. However, a full
resolution of this issue is beyond the scope of this current
contribution and will require additional studies of both
symbiont-bearing and non-symbiont bearing foraminifera, and of
inorganic carbonates precipitated in equilibrium at rates compar-
able to those seen in biogenic carbonates.
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Fig. 7. Down-core d11B (Panel A) and reconstructed pCO2 (Panel B) from ODP site 999A (crosses, Foster, 2008) and GeoB1532-1 (circles, this study), compared to CO2

concentrations from ice cores (black line). The thick red line in Panel B is a cubic spline plotted on evenly subsampled values from both sites, as calculated using
Analyseries (Paillard et al., 1996), with the shaded area reflecting uncertainty on the spline of 717 ppm (i.e. 29 ppm individual uncertainty/O2). Note that these data are
corrected for local ocean–atmosphere disequilibrium, which is taken as the modern mean annual values (from Takahashi et al., 2009) corrected for the pre-industrial with
reference to Gloor et al. (2003): þ21 ppm (999A) and þ27 ppm (GeoB1523-1). Also plotted (green line) is a similar spline through pCO2 reconstructions based on a
constant vital effect ‘a’ (see Eq. (6) above) of þ0.8% as applied by Foster (2008), illustrating the improved fit of the new calibration. Uncertainty on each individual
measurement is plotted (Panel A), with uncertainty on pCO2 reconstructions (Panel B) a quadratic addition of the various uncertainties on reconstructed pH, alkalinity and
temperature. Insert in panel B is a cross-plot of ice-core derived vs. reconstructed pCO2, with uncertainty on the 1:1 line (shown as grey shaded region) representing 6 ppm
uncertainty on ice-core measurements (from Ahn et al., 2012). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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4.2. d11B offset between culture and non-culture: a size fraction
effect on d11B in G. ruber

While towed, sediment trap and core-top specimens are
permissively in agreement with the pH-sensitivity of d11BCaCO3

observed in our cultures, it is clear there is a discrepancy in d11B
values predicted by the culture calibration and some measure-
ments of non-culture specimens of G. ruber (Fig. 5). The degree of
offset from the calibration does not correlate with in situ tem-
perature (R2¼0.04) or the saturation state of bottom water at
these core-top sites (R2¼0.05), suggesting there is no discernible
temperature or dissolution effect. This offset does, however, show
some correlation with test size fraction (see Fig. 6, Supplementary
Fig. S8). Previous evidence (Ni et al., 2007) for a size-fraction
effect in G. ruber is ambiguous because of prohibitive uncertainty
in d11B measurements (!70.8% vs. !70.25% here). Increasing
d11B with size is, however, resolvable in the closely-related
species G. sacculifer (Hemming and Hönisch, 2007; Ni et al., 2007).
Moreover, size-fraction effects in G. ruber have been noted in d13C
and d18O (e.g. Kroon and Darling, 1995), B/Ca (Ni et al., 2007), and in
Mg/Ca and Sr/Ca (e.g. Friedrich et al., 2012).

The cause of any size fraction effect on d11B is not clear.
Preferential dissolution (Hönisch and Hemming, 2004; Ni et al.,
2007) seems unlikely, since (a) similar offsets from aqueous d11Bborate

are reproduced even in towed samples (see Fig. 5), (b) there is no
relationship between degree of offset and deepwater carbonate
saturation at the site of deposition, and (c) the lack of any
geochemically distinct gametogenic calcite in G. ruber (Caron et al.,
1990) should make the issue of preferential dissolution less pertinent
in this species (see also Seki et al., 2010; Fig. 7A). Instead we support
the suggestion by Hönisch and Hemming (2004) that a size-fraction
effect in d11B is due to intensified micro-environmental alteration by
symbionts in larger specimens. That said, we query the assertion by
Hönisch and Hemming (2004) that increasing d13C and d11B with
size must be due to larger specimens living at shallower depths (thus
experiencing a stronger light intensity and stronger microenviron-
ment alteration). While this seems consistent with Caron et al.
(1990), we urge some caution in this interpretation without direct
ecological evidence for a bias towards larger test size in G. ruber from
shallower waters: Bijma et al. (1990) report living individuals
measuring anywhere between 125 mm and 708 mm within the
uppermost 5 m of the Red Sea at all stages in G. ruber’s semilunar
life-cycle. Besides, foraminifera towed from o10 m record lower,
not higher, d11B than foraminifera cultured at light levels equivalent
to !20 m water depth (though we concede these individuals might
conceivably have grown to larger size—and heavier d11B—had they
completed their life cycle at this depth).

It is instead likely that the magnitude of these microenviron-
ment effects might change with test size without any need to
invoke changes in habitat depth. Photosynthesis by symbionts in
the microenvironment surrounding planktic foraminifera raises
pH, while respiration and calcification lower pH (Jørgensen et al.,
1985; Köhler-Rink and Kühl, 2005; Rink et al., 1998). Crucially,
rates of respiration and photosynthesis in culture specimens have
been seen to change with test size (Lombard et al., 2009; Rink
et al., 1998), with photosynthesis increasing relative to respira-
tion in larger specimens of G. ruber (Lombard et al., 2009).
In addition, as foraminifera grow, the diffusive boundary layer
around their tests is expanded, lengthening timescales for diffu-
sion of carbon through the microenvironment. As such, equilibra-
tion of the microenvironment with the ambient seawater slows,
and as such any microenvironment pH alteration would be
accentuated (see model of Wolf-Gladrow et al., 1999). While
more in situ microelectrode measurements are required to fully
test these hypotheses, they could explain the observed patterns in
recorded d11B we see here.

It is also possible that increased test size might be resultant
from, not a driver of, increased symbiont activity, with elevated
d11B an inevitable result. Planktonic foraminifera acquire algal
symbionts early in their life cycle (Hemleben et al., 1989). Should
the activity of symbionts in the foraminiferal microenvironment
impart an advantage to the calcification of the host by raising
external pH and OCaCO3

(reflected in d11B) and thus reducing
energetic expenditure needed to raise internal vacuole pH
(as suggested by Bentov et al., 2009), foraminifera that happen
to succeed in acquiring symbionts earlier in their ontogeny might
grow more rapidly, and thus attain larger size prior to gameto-
genesis. Clearly additional modelling and field observation are
required to investigate these hypotheses further.

4.3. Applying the G. ruber d11B–pH calibration to downcore data

Reconstructed pCO2 from Sites GeoB1523-1 and ODP 999A
using this new calibration for G. ruber tracks reconstructions from
ice cores very closely, with average deviation (#5 ppm) from ice
core pCO2 within propagated uncertainty of 729 ppm. Although
broadly similar results can be generated with the approach of
Foster (2008) ( Eq. (6) above), the new calibration more accurately
reproduces the 90 ppm magnitude of deglacial pCO2 increase seen
in ice core reconstructions (DpCO2¼!80 ppm vs. !50 ppm using
Foster, 2008). What is more, while these sorts of improvements in
fit are within uncertainty over these short timescales, the impor-
tance of the lower pH sensitivity documented here is magnified in
deeper time when pCO2 is likely to have been higher.

5. Conclusions

This contribution represents a further demonstration of the
dominance of pH as a control on foraminiferal d11B. It is the first
species-specific foraminiferal culture calibration analysed using
MC-ICPMS, and the first to incorporate globally-distributed
cultured, towed, sediment trap and core-top foraminifera.
The new method we advocate for presenting culture calibrations
allows for greater ease of comparison and uncertainty calculation
and propagation. We show that recorded d11B in G. ruber deviates
markedly from the simple inorganic basis of the proxy, corrobor-
ating previous foraminiferal culture studies analysed using
N-TIMS (Sanyal et al., 2001, 1996), and supporting the results of
published down-core reconstructions that are based on
pH-sensitivities of d11BCaCO3

that are lower than d11Bborate.
We also document for the first time a size-fraction effect in
d11BG. ruber, which must be taken into account in down-core
application. As we illustrate for the last 30 kyr (Fig. 7), however,
by analysing well-constrained size fractions and applying a
species-specific culture calibration, accurate and precise esti-
mates of past levels of atmospheric CO2 can be reconstructed.
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Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook,
B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R., de
Baar, H.J.W, 2009. Climatological mean and decadal change in surface ocean
pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. Pt. II 56,
554–577.

Trotter, J., Montagna, P., McCulloch, M., Silenzi, S., Reynaud, S., Mortimer, G.,
Martin, S., Ferrier-Pag!es, C., Gattuso, J.-P., Rodolfo-Metalpa, R., 2011. Quantify-
ing the pH ‘‘vital effect’’ in the temperate zooxanthellate coral Cladocora
caespitosa: validation of the boron seawater pH proxy. Earth Planet. Sci. Lett.
303, 163–173.

van Heuven, S., Pierrot, D., Rae, J.W.B., Lewis, E., Wallace, D.W.R., 2011. MATLAB
program developed for CO2 system calculations, CO2sys. Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, US.

Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A.R., McCulloch, M.T., 1991.
Coprecipitation and isotopic fractionation of boron in modern biogenic
carbonates. Geochim. Cosmochim. Acta 55, 2901–2910.

Villiers, S.de, Greaves, M., Elderfield, H., 2002. An intensity ratio calibration
method for the accurate determination of Mg/Ca and Sr/Ca of marine
carbonates by ICP-AES. Geochem. Geophys. Geosyst. 3, 1001.

Wang, L., 2000. Isotopic signals in two morphotypes of Globigerinoides ruber
(white) from the South China Sea: implications for monsoon climate change
during the last glacial cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161,
381–394.

Wolf-Gladrow, D.A., Bijma, J., Zeebe, R.E., 1999. Model simulation of the carbonate
system in the microenvironment of symbiont bearing foraminifera. Mar.
Chem. 64, 181–198.

York, D., 1968. Least squares fitting of a straight line with correlated errors. Earth
Planet. Sci. Lett. 5, 320–324.

Yu, J., Foster, G.L., Elderfield, H., Broecker, W.S., Clark, E., 2010. An evaluation of
benthic foraminiferal B/Ca and d11B for deep ocean carbonate ion and pH
reconstructions. Earth Planet. Sci. Lett. 293, 114–120.

Zeebe, R.E., 2005. Stable boron isotope fractionation between dissolved B(OH)3

and B(OH)4
# . Geochim. Cosmochim. Acta 69, 2753–2766.

Zeebe, R.E., Sanyal, A., Ortiz, J.D., Wolf-Gladrow, D.A., 2001. A theoretical study of
the kinetics of the boric acid–borate equilibrium in seawater. Mar. Chem. 73,
113–124.

Zeebe, R.E., Wolf-Gladrow, D.A., 2001. CO2 in Seawater: Equilibrium, Kinetics,
Isotopes. Elsevier Oceanography Series. Elsevier, Amsterdam.

Zeebe, R.E., Wolf-Gladrow, D.A., Bijma, J., Hönisch, B., 2003. Vital effects in
foraminifera do not compromise the use of d11B as a paleo-pH indicator:
evidence from modeling. Paleoceanography 18, 9.

M.J. Henehan et al. / Earth and Planetary Science Letters 364 (2013) 111–122122



Appendix B

Supplementary Materials:

Henehan et al. (2013)

214



A
p
p
en

d
ix

B
.
S
u
pplem

en
tary

M
aterials:

H
en

ehan
et

al.
(2013)

215

SITE Archive Long
(�E)

Lat
(�N)

Month SST
(�C)

S pK⇤
B TAlk

(µmol/
kg)

pCO2 SiO2�
4 PO�

4 pH �11BB(OH)�4

CAR22(Z)-7 Marshall,
B.

-64.67 10.50 Collected
Jan-07

Dec-06 26.9 36.5 8.567 2385 408 1.77 0.04 8.042 18.39

Feb-07 22.9 36.8 8.612 2424 379 0.37 0.08 8.077 18.28

Date-weighted average 8.066 8.31
Uncertainty (± Half of the December-February range) 0.018 0.052

Table B.1: Sediment Trap Carbonate System Calculations. Data downloadable from IMARS

http://www.imars.usf.edu/CAR/
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 1 22.9 35.81 8.617 Alk =

Sal*65.91

2360.2 -26.21 0.591 261.1 0.9 0.12 8.199 19.54

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 2 23.5 35.73 8.611 Alk =

Sal*65.91

2355.0 -14.65 0.591 267.9 0.9 0.12 8.189 19.49

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 3 23.2 35.77 8.614 Alk =

Sal*65.91

2357.6 -19.79 0.591 264.9 0.9 0.12 8.193 19.50

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 4 22.3 35.87 8.624 Alk =

Sal*65.91

2364.2 -33.79 0.591 256.6 0.9 0.12 8.206 19.54

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 5 21.1 35.81 8.638 Alk =

Sal*65.91

2360.2 -34.5 0.591 256.2 0.9 0.12 8.208 19.39

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 6 19.9 35.85 8.653 Alk =

Sal*65.91

2362.9 -32.78 0.591 257.2 0.9 0.12 8.208 19.21

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 7 18.9 35.77 8.665 Alk =

Sal*65.91

2357.6 -40.1 0.591 252.9 0.9 0.12 8.215 19.14

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 8 18.4 35.74 8.671 Alk =

Sal*65.91

2355.6 -47.25 0.591 248.7 0.9 0.12 8.221 19.15

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 9 18.4 35.75 8.670 Alk =

Sal*65.91

2356.3 -45.15 0.591 249.9 0.9 0.12 8.219 19.13

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 10 19.0 35.77 8.664 Alk =

Sal*65.91

2357.6 -47.94 0.591 248.3 0.9 0.12 8.221 19.23

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 11 20.1 35.7 8.651 Alk =

Sal*65.91

2353.0 -39.08 0.591 253.5 0.9 0.12 8.212 19.29

G4 Bostock,

H.

167.25 -28.42 162.5 -32 0.0282 12 21.6 35.75 8.633 Alk =

Sal*65.91

2356.3 -33.75 0.591 256.7 0.9 0.12 8.206 19.43

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 1 24.4 35.85 8.599 Alk =

Sal*65.91

2362.9 3.39 0.591 278.6 0.9 0.12 8.175 19.46

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 2 24.9 35.81 8.594 Alk =

Sal*65.91

2360.2 -2.01 0.591 275.4 0.9 0.12 8.178 19.57

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 3 24.6 35.74 8.598 Alk =

Sal*65.91

2355.6 -13.53 0.591 268.6 0.9 0.12 8.186 19.62
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 4 23.7 35.84 8.607 Alk =

Sal*65.91

2362.2 -20.05 0.591 264.8 0.9 0.12 8.193 19.59

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 5 22.6 35.87 8.620 Alk =

Sal*65.91

2364.2 -18.39 0.591 265.7 0.9 0.12 8.194 19.44

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 6 21.4 35.91 8.634 Alk =

Sal*65.91

2366.8 -30.35 0.591 258.7 0.9 0.12 8.205 19.40

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 7 20.5 35.84 8.646 Alk =

Sal*65.91

2362.2 -44.51 0.591 250.3 0.9 0.12 8.217 19.41

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 8 20.0 35.81 8.652 Alk =

Sal*65.91

2360.2 -47.7 0.591 248.4 0.9 0.12 8.220 19.37

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 9 20.1 35.89 8.650 Alk =

Sal*65.91

2365.5 -38.27 0.591 254.0 0.9 0.12 8.213 19.30

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 10 20.7 35.86 8.642 Alk =

Sal*65.91

2363.5 -22.37 0.591 263.4 0.9 0.12 8.199 19.23

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 11 21.9 35.8 8.629 Alk =

Sal*65.91

2359.6 -16.73 0.591 266.7 0.9 0.12 8.193 19.32

G4 Bostock,

H.

167.25 -28.42 162.5 -28 0.0440 12 23.2 35.84 8.613 Alk =

Sal*65.91

2362.2 -24.03 0.591 262.4 0.9 0.12 8.197 19.56

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 1 21.9 35.71 8.629 Alk =

Sal*65.91

2353.6 -26.99 0.591 260.7 0.9 0.12 8.200 19.41

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 2 22.6 35.69 8.621 Alk =

Sal*65.91

2352.3 -17.58 0.591 266.2 0.9 0.12 8.192 19.40

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 3 22.3 35.76 8.624 Alk =

Sal*65.91

2356.9 -24.12 0.591 262.3 0.9 0.12 8.198 19.43

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 4 21.4 35.84 8.634 Alk =

Sal*65.91

2362.2 -27.72 0.591 260.2 0.9 0.12 8.202 19.37

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 5 20.3 35.86 8.647 Alk =

Sal*65.91

2363.5 -34.17 0.591 256.4 0.9 0.12 8.209 19.29

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 6 19.1 35.77 8.663 Alk =

Sal*65.91

2357.6 -31.44 0.591 258.0 0.9 0.12 8.208 19.09
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 7 18.2 35.74 8.674 Alk =

Sal*65.91

2355.6 -35.02 0.591 255.9 0.9 0.12 8.211 19.00

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 8 17.7 35.69 8.680 Alk =

Sal*65.91

2352.3 -42.38 0.591 251.6 0.9 0.12 8.217 19.00

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 9 17.7 35.66 8.679 Alk =

Sal*65.91

2350.4 -44.44 0.591 250.3 0.9 0.12 8.219 19.02

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 10 18.2 35.73 8.673 Alk =

Sal*65.91

2355.0 -45.64 0.591 249.6 0.9 0.12 8.220 19.11

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 11 19.3 35.66 8.660 Alk =

Sal*65.91

2350.4 -34.75 0.591 256.1 0.9 0.12 8.209 19.14

G4 Bostock,

H.

167.25 -28.42 167.5 -32 0.0775 12 20.7 35.71 8.643 Alk =

Sal*65.91

2353.6 -38.11 0.591 254.1 0.9 0.12 8.210 19.36

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 1 24.0 35.9 8.604 Alk =

Sal*65.91

2366.2 -3.69 0.591 274.4 0.9 0.12 8.181 19.48

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 2 24.5 35.77 8.598 Alk =

Sal*65.91

2357.6 0.22 0.591 276.7 0.9 0.12 8.176 19.49

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 3 24.2 35.74 8.602 Alk =

Sal*65.91

2355.6 -22.05 0.591 263.6 0.9 0.12 8.193 19.66

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 4 23.3 35.8 8.612 Alk =

Sal*65.91

2359.6 -35.28 0.591 255.8 0.9 0.12 8.205 19.68

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 5 22.3 35.89 8.624 Alk =

Sal*65.91

2365.5 -28.31 0.591 259.9 0.9 0.12 8.202 19.49

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 6 21.0 35.83 8.639 Alk =

Sal*65.91

2361.6 -32.19 0.591 257.6 0.9 0.12 8.206 19.36

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 7 20.2 35.8 8.650 Alk =

Sal*65.91

2359.6 -43.02 0.591 251.2 0.9 0.12 8.216 19.35

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 8 19.7 35.83 8.655 Alk =

Sal*65.91

2361.6 -47.78 0.591 248.4 0.9 0.12 8.220 19.34

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 9 19.8 35.81 8.653 Alk =

Sal*65.91

2360.2 -47.73 0.591 248.4 0.9 0.12 8.220 19.35



A
p
p
en

d
ix

B
.
S
u
pplem

en
tary

M
aterials:

H
en

ehan
et

al.
(2013)

219

Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 10 20.5 35.85 8.646 Alk =

Sal*65.91

2362.9 -36.2 0.591 255.2 0.9 0.12 8.210 19.33

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 11 21.6 35.79 8.633 Alk =

Sal*65.91

2358.9 -20.05 0.591 264.8 0.9 0.12 8.196 19.31

G4 Bostock,

H.

167.25 -28.42 167.5 -28 4.2348 12 22.9 35.82 8.617 Alk =

Sal*65.91

2360.9 -23.39 0.591 262.8 0.9 0.12 8.197 19.51

Interpolated average 8.202 19.44

Interpolated intraannual variation 0.030 0.29

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 1 24.1 36.54 8.599 Alk =

(62.9*Sal)

+ 87.77

2386.1 27.96 0.591 291.5 3.19 0.51 8.161 19.30

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 2 23.7 36.44 8.604 Alk =

(62.9*Sal)

+ 87.77

2379.8 6.86 0.591 279.1 3.19 0.51 8.176 19.41

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 3 24.6 36.49 8.593 Alk =

(62.9*Sal)

+ 87.77

2383.0 12.89 0.591 282.6 3.19 0.51 8.171 19.48

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 4 26.6 36.54 8.570 Alk =

(62.9*Sal)

+ 87.77

2386.1 24.48 0.591 289.5 3.19 0.51 8.159 19.64

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 5 28.8 36.57 8.545 Alk =

(62.9*Sal)

+ 87.77

2388.0 36.75 0.591 296.7 3.19 0.51 8.148 19.80

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 6 29.6 36.59 8.535 Alk =

(62.9*Sal)

+ 87.77

2389.3 44.33 0.591 301.2 3.19 0.51 8.141 19.84

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 7 28.6 36.35 8.548 Alk =

(62.9*Sal)

+ 87.77

2374.2 79.13 0.591 321.8 3.19 0.51 8.119 19.42
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 8 27.5 36.53 8.560 Alk =

(62.9*Sal)

+ 87.77

2385.5 85.26 0.591 325.4 3.19 0.51 8.119 19.26

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 9 27.6 36.37 8.559 Alk =

(62.9*Sal)

+ 87.77

2375.4 90.85 0.591 328.7 3.19 0.51 8.114 19.21

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 10 28.1 36.37 8.553 Alk =

(62.9*Sal)

+ 87.77

2375.4 50.14 0.591 304.6 3.19 0.51 8.139 19.58

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 11 27.2 36.55 8.563 Alk =

(62.9*Sal)

+ 87.77

2386.8 27.28 0.591 291.1 3.19 0.51 8.157 19.69

MC497 Kucera,

M.

63.31 23.53 62.5 20 0.0762 12 25.5 36.54 8.583 Alk =

(62.9*Sal)

+ 87.77

2386.1 29.04 0.591 292.2 3.19 0.51 8.158 19.46

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 1 24.8 36.38 8.592 Alk =

(62.9*Sal)

+ 87.77

2376.1 37 0.591 296.9 3.19 0.51 8.153 19.29

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 2 24.7 36.37 8.593 Alk =

(62.9*Sal)

+ 87.77

2375.4 24.41 0.591 289.4 3.19 0.51 8.162 19.37

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 3 25.8 36.41 8.580 Alk =

(62.9*Sal)

+ 87.77

2378.0 36.1 0.591 296.3 3.19 0.51 8.152 19.42

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 4 27.7 36.49 8.558 Alk =

(62.9*Sal)

+ 87.77

2383.0 28.73 0.591 292.0 3.19 0.51 8.154 19.73

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 5 28.9 36.48 8.543 Alk =

(62.9*Sal)

+ 87.77

2382.4 24.76 0.591 289.6 3.19 0.51 8.155 19.92
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 6 28.9 36.35 8.545 Alk =

(62.9*Sal)

+ 87.77

2374.2 31.37 0.591 293.5 3.19 0.51 8.150 19.83

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 7 27.1 36.35 8.565 Alk =

(62.9*Sal)

+ 87.77

2374.2 23.7 0.591 289.0 3.19 0.51 8.158 19.68

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 8 26.0 36.35 8.578 Alk =

(62.9*Sal)

+ 87.77

2374.2 63.6 0.591 312.6 3.19 0.51 8.133 19.22

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 9 26.8 36.19 8.570 Alk =

(62.9*Sal)

+ 87.77

2364.1 40.51 0.591 298.9 3.19 0.51 8.146 19.47

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 10 28.0 36.26 8.555 Alk =

(62.9*Sal)

+ 87.77

2368.5 33.42 0.591 294.7 3.19 0.51 8.149 19.69

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 11 27.5 36.38 8.560 Alk =

(62.9*Sal)

+ 87.77

2376.1 22.95 0.591 288.6 3.19 0.51 8.158 19.74

MC497 Kucera,

M.

63.31 23.53 62.5 24 1.1403 12 26.0 36.41 8.578 Alk =

(62.9*Sal)

+ 87.77

2378.0 39.47 0.591 298.3 3.19 0.51 8.150 19.42

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 1 25.3 36.33 8.586 Alk =

(62.9*Sal)

+ 87.77

2372.9 29.04 0.591 292.2 3.19 0.51 8.157 19.41

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 2 25.3 36.12 8.588 Alk =

(62.9*Sal)

+ 87.77

2359.7 5.45 0.591 278.2 3.19 0.51 8.172 19.58

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 3 26.2 36.12 8.577 Alk =

(62.9*Sal)

+ 87.77

2359.7 -1.6 0.591 274.1 3.19 0.51 8.176 19.76
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 4 27.7 36.23 8.559 Alk =

(62.9*Sal)

+ 87.77

2366.6 14.35 0.591 283.5 3.19 0.51 8.163 19.82

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 5 29.0 36.3 8.543 Alk =

(62.9*Sal)

+ 87.77

2371.0 21.25 0.591 287.6 3.19 0.51 8.156 19.93

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 6 29.4 36.51 8.538 Alk =

(62.9*Sal)

+ 87.77

2384.2 22.68 0.591 288.4 3.19 0.51 8.155 20.00

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 7 28.5 36.45 8.549 Alk =

(62.9*Sal)

+ 87.77

2380.5 20.22 0.591 286.9 3.19 0.51 8.158 19.89

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 8 27.6 36.49 8.559 Alk =

(62.9*Sal)

+ 87.77

2383.0 27.47 0.591 291.2 3.19 0.51 8.156 19.72

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 9 27.9 36.19 8.557 Alk =

(62.9*Sal)

+ 87.77

2364.1 36.97 0.591 296.8 3.19 0.51 8.147 19.64

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 10 28.4 36.05 8.552 Alk =

(62.9*Sal)

+ 87.77

2355.3 32.79 0.591 294.4 3.19 0.51 8.148 19.72

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 11 27.9 36.27 8.557 Alk =

(62.9*Sal)

+ 87.77

2369.2 16.05 0.591 284.5 3.19 0.51 8.161 19.83

MC497 Kucera,

M.

63.31 23.53 67.5 20 0.0333 12 26.4 36.34 8.573 Alk =

(62.9*Sal)

+ 87.77

2373.6 15.72 0.591 284.3 3.19 0.51 8.165 19.66

Interpolated average 8.152 19.57

Interpolated intraannual variation 0.020 0.55

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 1 20.6 35.74 8.644 Alk =

Sal*65.91

2355.6 -26.81 0.591 266.4 0.9 0.25 8.195 19.15
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 2 21.3 35.59 8.637 Alk =

Sal*65.91

2345.7 -20.32 0.591 270.2 0.9 0.25 8.188 19.16

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 3 21.0 35.71 8.641 Alk =

Sal*65.91

2353.6 -29.64 0.591 264.7 0.9 0.25 8.196 19.22

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 4 20.0 35.66 8.652 Alk =

Sal*65.91

2350.4 -39.62 0.591 258.8 0.9 0.25 8.205 19.18

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 5 18.8 35.83 8.666 Alk =

Sal*65.91

2361.6 -35.79 0.591 261.1 0.9 0.25 8.204 19.01

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 6 17.6 35.8 8.681 Alk =

Sal*65.91

2359.6 -33.92 0.591 262.2 0.9 0.25 8.204 18.83

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 7 16.7 35.72 8.692 Alk =

Sal*65.91

2354.3 -40.09 0.591 258.5 0.9 0.25 8.209 18.76

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 8 16.2 35.64 8.698 Alk =

Sal*65.91

2349.0 -45.86 0.591 255.1 0.9 0.25 8.213 18.73

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 9 16.2 35.56 8.699 Alk =

Sal*65.91

2343.8 -48.98 0.591 253.3 0.9 0.25 8.215 18.75

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 10 16.6 35.62 8.693 Alk =

Sal*65.91

2347.7 -50.34 0.591 252.5 0.9 0.25 8.216 18.83

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 11 17.7 35.55 8.680 Alk =

Sal*65.91

2343.1 -44.45 0.591 255.9 0.9 0.25 8.210 18.91

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -36 0.0448 12 19.2 35.6 8.662 Alk =

Sal*65.91

2346.4 -45.33 0.591 255.4 0.9 0.25 8.210 19.12

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 1 22.9 35.81 8.617 Alk =

Sal*65.91

2360.2 -26.21 0.591 266.7 0.9 0.25 8.191 19.45

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 2 23.5 35.73 8.611 Alk =

Sal*65.91

2355.0 -14.65 0.591 273.5 0.9 0.25 8.182 19.40

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 3 23.2 35.77 8.614 Alk =

Sal*65.91

2357.6 -19.79 0.591 270.5 0.9 0.25 8.186 19.42

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 4 22.3 35.87 8.624 Alk =

Sal*65.91

2364.2 -33.79 0.591 262.2 0.9 0.25 8.199 19.45
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 5 21.1 35.81 8.638 Alk =

Sal*65.91

2360.2 -34.5 0.591 261.8 0.9 0.25 8.200 19.30

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 6 19.9 35.85 8.653 Alk =

Sal*65.91

2362.9 -32.78 0.591 262.8 0.9 0.25 8.201 19.12

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 7 18.9 35.77 8.665 Alk =

Sal*65.91

2357.6 -40.1 0.591 258.5 0.9 0.25 8.207 19.05

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 8 18.4 35.74 8.671 Alk =

Sal*65.91

2355.6 -47.25 0.591 254.3 0.9 0.25 8.213 19.06

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 9 18.4 35.75 8.670 Alk =

Sal*65.91

2356.3 -45.15 0.591 255.5 0.9 0.25 8.211 19.04

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 10 19.0 35.77 8.664 Alk =

Sal*65.91

2357.6 -47.94 0.591 253.9 0.9 0.25 8.213 19.14

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 11 20.1 35.7 8.651 Alk =

Sal*65.91

2353.0 -39.08 0.591 259.1 0.9 0.25 8.204 19.19

OC476-

SR223

Bostock,

H.

166.53 -33.53 162.5 -32 0.0537 12 21.6 35.75 8.633 Alk =

Sal*65.91

2356.3 -33.75 0.591 262.3 0.9 0.25 8.199 19.34

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 1 19.9 35.6 8.654 Alk =

Sal*65.91

2346.4 -29.3 0.591 264.9 0.9 0.25 8.196 19.06

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 2 20.6 35.57 8.645 Alk =

Sal*65.91

2344.4 -19.7 0.591 270.6 0.9 0.25 8.188 19.06

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 3 20.2 35.6 8.650 Alk =

Sal*65.91

2346.4 -22.71 0.591 268.8 0.9 0.25 8.191 19.05

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 4 19.3 35.63 8.660 Alk =

Sal*65.91

2348.4 -28.39 0.591 265.4 0.9 0.25 8.197 18.98

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 5 18.1 35.68 8.675 Alk =

Sal*65.91

2351.7 -35.06 0.591 261.5 0.9 0.25 8.203 18.89

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 6 16.8 35.69 8.691 Alk =

Sal*65.91

2352.3 -31.88 0.591 263.4 0.9 0.25 8.202 18.69

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 7 15.9 35.66 8.701 Alk =

Sal*65.91

2350.4 -33.53 0.591 262.4 0.9 0.25 8.204 18.59
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 8 15.4 35.53 8.708 Alk =

Sal*65.91

2341.8 -35.94 0.591 261.0 0.9 0.25 8.205 18.53

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 9 15.4 35.48 8.708 Alk =

Sal*65.91

2338.5 -40.7 0.591 258.2 0.9 0.25 8.209 18.56

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 10 15.9 35.58 8.702 Alk =

Sal*65.91

2345.1 -38.39 0.591 259.5 0.9 0.25 8.207 18.62

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 11 17.0 35.47 8.689 Alk =

Sal*65.91

2337.8 -32.98 0.591 262.7 0.9 0.25 8.201 18.70

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -36 0.1424 12 18.4 35.6 8.671 Alk =

Sal*65.91

2346.4 -43.83 0.591 256.3 0.9 0.25 8.209 19.01

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 1 21.9 35.71 8.629 Alk =

Sal*65.91

2353.6 -26.99 0.591 266.3 0.9 0.25 8.193 19.32

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 2 22.6 35.69 8.621 Alk =

Sal*65.91

2352.3 -17.58 0.591 271.8 0.9 0.25 8.185 19.31

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 3 22.3 35.76 8.624 Alk =

Sal*65.91

2356.9 -24.12 0.591 267.9 0.9 0.25 8.190 19.34

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 4 21.4 35.84 8.634 Alk =

Sal*65.91

2362.2 -27.72 0.591 265.8 0.9 0.25 8.195 19.28

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 5 20.3 35.86 8.647 Alk =

Sal*65.91

2363.5 -34.17 0.591 262.0 0.9 0.25 8.201 19.20

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 6 19.1 35.77 8.663 Alk =

Sal*65.91

2357.6 -31.44 0.591 263.6 0.9 0.25 8.200 19.00

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 7 18.2 35.74 8.674 Alk =

Sal*65.91

2355.6 -35.02 0.591 261.5 0.9 0.25 8.204 18.91

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 8 17.7 35.69 8.680 Alk =

Sal*65.91

2352.3 -42.38 0.591 257.2 0.9 0.25 8.210 18.91

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 9 17.7 35.66 8.679 Alk =

Sal*65.91

2350.4 -44.44 0.591 255.9 0.9 0.25 8.211 18.93

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 10 18.2 35.73 8.673 Alk =

Sal*65.91

2355.0 -45.64 0.591 255.2 0.9 0.25 8.212 19.02
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 11 19.3 35.66 8.660 Alk =

Sal*65.91

2350.4 -34.75 0.591 261.7 0.9 0.25 8.202 19.05

OC476-

SR223

Bostock,

H.

166.53 -33.53 167.5 -32 0.3042 12 20.7 35.71 8.643 Alk =

Sal*65.91

2353.6 -38.11 0.591 259.7 0.9 0.25 8.203 19.26

Interpolated average 8.201 19.04

Interpolated intraannual variation 0.013 0.37

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 1 28.9 35.02 8.553 Alk =

(66.275*Sal)

- 18.256

2302.7 -8.84 1.786 258.8 2 0.13 8.185 20.20

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 2 29.1 34.79 8.551 Alk =

(66.275*Sal)

- 18.256

2287.5 -11.68 1.786 253.7 2 0.13 8.190 20.28

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 3 29.1 34.94 8.550 Alk =

(66.275*Sal)

- 18.256

2297.4 -15.03 1.786 247.8 2 0.13 8.199 20.40

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 4 28.8 34.89 8.554 Alk =

(66.275*Sal)

- 18.256

2294.1 -13.88 1.786 249.8 2 0.13 8.196 20.32

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 5 28.0 34.89 8.563 Alk =

(66.275*Sal)

- 18.256

2294.1 -14 1.786 249.6 2 0.13 8.198 20.23

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 6 27.2 35.1 8.571 Alk =

(66.275*Sal)

- 18.256

2308.0 -19.46 1.786 239.9 2 0.13 8.214 20.33

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 7 26.6 35.07 8.579 Alk =

(66.275*Sal)

- 18.256

2306.0 -37.19 1.786 208.2 2 0.13 8.261 20.87

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 8 26.3 35.15 8.582 Alk =

(66.275*Sal)

- 18.256

2311.3 -42.49 1.786 198.7 2 0.13 8.277 21.05
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 9 26.3 35.2 8.581 Alk =

(66.275*Sal)

- 18.256

2314.6 -33.02 1.786 215.6 2 0.13 8.251 20.70

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 10 26.8 35.02 8.576 Alk =

(66.275*Sal)

- 18.256

2302.7 -30.37 1.786 220.4 2 0.13 8.242 20.64

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 11 27.6 35.02 8.567 Alk =

(66.275*Sal)

- 18.256

2302.7 -18.85 1.786 240.9 2 0.13 8.211 20.35

T329 Bostock,

H.

173.57 -12.96 172.5 -16 0.0961 12 28.4 34.99 8.558 Alk =

(66.275*Sal)

- 18.256

2300.7 -9.75 1.786 257.2 2 0.13 8.188 20.16

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 1 29.4 34.79 8.547 Alk =

(66.275*Sal)

- 18.256

2287.5 8.04 1.786 289.0 2 0.13 8.146 19.76

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 2 29.6 34.54 8.547 Alk =

(66.275*Sal)

- 18.256

2270.9 5.46 1.786 284.4 2 0.13 8.150 19.81

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 3 29.5 34.73 8.546 Alk =

(66.275*Sal)

- 18.256

2283.5 6.09 1.786 285.5 2 0.13 8.150 19.81

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 4 29.4 34.57 8.549 Alk =

(66.275*Sal)

- 18.256

2272.9 6.25 1.786 285.8 2 0.13 8.149 19.77

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 5 29.0 34.53 8.553 Alk =

(66.275*Sal)

- 18.256

2270.2 3.99 1.786 281.7 2 0.13 8.154 19.78

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 6 28.5 34.69 8.558 Alk =

(66.275*Sal)

- 18.256

2280.8 -0.29 1.786 274.1 2 0.13 8.165 19.85
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 7 28.1 34.67 8.564 Alk =

(66.275*Sal)

- 18.256

2279.5 -5.29 1.786 265.2 2 0.13 8.177 19.94

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 8 27.9 34.86 8.565 Alk =

(66.275*Sal)

- 18.256

2292.1 -8.34 1.786 259.7 2 0.13 8.185 20.03

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 9 28.1 34.87 8.562 Alk =

(66.275*Sal)

- 18.256

2292.8 -7.15 1.786 261.8 2 0.13 8.182 20.02

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 10 28.4 34.78 8.560 Alk =

(66.275*Sal)

- 18.256

2286.8 -2.76 1.786 269.7 2 0.13 8.171 19.92

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 11 28.9 34.88 8.553 Alk =

(66.275*Sal)

- 18.256

2293.4 2.44 1.786 279.0 2 0.13 8.160 19.86

T329 Bostock,

H.

173.57 -12.96 172.5 -12 0.4887 12 29.4 34.83 8.548 Alk =

(66.275*Sal)

- 18.256

2290.1 6.76 1.786 286.7 2 0.13 8.149 19.79

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 1 28.9 34.93 8.553 Alk =

(66.275*Sal)

- 18.256

2296.7 -5.95 1.786 264.0 2 0.13 8.178 20.10

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 2 29.2 34.92 8.550 Alk =

(66.275*Sal)

- 18.256

2296.1 -12.42 1.786 252.4 2 0.13 8.192 20.33

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 3 29.2 34.92 8.549 Alk =

(66.275*Sal)

- 18.256

2296.1 -11.95 1.786 253.3 2 0.13 8.191 20.31

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 4 28.9 35.01 8.553 Alk =

(66.275*Sal)

- 18.256

2302.0 3.76 1.786 281.3 2 0.13 8.158 19.84
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 5 28.1 35.01 8.561 Alk =

(66.275*Sal)

- 18.256

2302.0 -4.33 1.786 266.9 2 0.13 8.177 19.97

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 6 27.3 35.07 8.570 Alk =

(66.275*Sal)

- 18.256

2306.0 -14.05 1.786 249.5 2 0.13 8.201 20.16

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 7 26.7 35.02 8.578 Alk =

(66.275*Sal)

- 18.256

2302.7 -24.37 1.786 231.1 2 0.13 8.227 20.41

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 8 26.3 35.16 8.581 Alk =

(66.275*Sal)

- 18.256

2312.0 -29.19 1.786 222.5 2 0.13 8.241 20.56

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 9 26.5 35.13 8.579 Alk =

(66.275*Sal)

- 18.256

2310.0 -28.74 1.786 223.3 2 0.13 8.239 20.55

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 10 27.0 35.05 8.574 Alk =

(66.275*Sal)

- 18.256

2304.7 -18.4 1.786 241.7 2 0.13 8.212 20.26

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 11 27.7 35.07 8.565 Alk =

(66.275*Sal)

- 18.256

2306.0 -3.92 1.786 267.6 2 0.13 8.177 19.92

T329 Bostock,

H.

173.57 -12.96 177.5 -16 0.0404 12 28.5 35.03 8.557 Alk =

(66.275*Sal)

- 18.256

2303.4 2.85 1.786 279.7 2 0.13 8.160 19.82

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 1 29.5 34.73 8.547 Alk =

(66.275*Sal)

- 18.256

2283.5 4.53 1.786 282.7 2 0.13 8.153 19.85

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 2 29.5 34.85 8.546 Alk =

(66.275*Sal)

- 18.256

2291.4 5.03 1.786 283.6 2 0.13 8.153 19.86
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 3 29.5 34.65 8.548 Alk =

(66.275*Sal)

- 18.256

2278.2 6.26 1.786 285.8 2 0.13 8.149 19.79

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 4 29.4 34.79 8.548 Alk =

(66.275*Sal)

- 18.256

2287.5 6.64 1.786 286.5 2 0.13 8.149 19.79

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 5 29.1 34.71 8.552 Alk =

(66.275*Sal)

- 18.256

2282.1 4.36 1.786 282.4 2 0.13 8.154 19.80

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 6 28.6 34.82 8.557 Alk =

(66.275*Sal)

- 18.256

2289.4 0 n/a 274.6 2 0.13 8.165 19.88

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 7 28.2 34.8 8.561 Alk =

(66.275*Sal)

- 18.256

2288.1 -3.51 1.786 268.3 2 0.13 8.173 19.92

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 8 28.0 34.97 8.562 Alk =

(66.275*Sal)

- 18.256

2299.4 0.62 1.786 275.7 2 0.13 8.166 19.82

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 9 28.2 34.96 8.560 Alk =

(66.275*Sal)

- 18.256

2298.7 12.45 1.786 296.8 2 0.13 8.141 19.52

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 10 28.5 34.92 8.557 Alk =

(66.275*Sal)

- 18.256

2296.1 6.99 1.786 287.1 2 0.13 8.151 19.69

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 11 29.0 34.87 8.552 Alk =

(66.275*Sal)

- 18.256

2292.8 4.91 1.786 283.4 2 0.13 8.154 19.80

T329 Bostock,

H.

173.57 -12.96 177.5 -12 0.0610 12 29.4 34.78 8.548 Alk =

(66.275*Sal)

- 18.256

2286.8 6.8 1.786 286.7 2 0.13 8.149 19.79

Interpolated average 8.171 19.96



A
p
p
en

d
ix

B
.
S
u
pplem

en
tary

M
aterials:

H
en

ehan
et

al.
(2013)

231

Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Interpolated intraannual variation 0.024 0.27

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 1 29.7 34.57 8.545 Alk =

(69.547*Sal)

- 130.95

2273.3 34.02 1.786 335.8 0.8 0.02 8.094 19.14

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 2 29.6 34.52 8.547 Alk =

(69.547*Sal)

- 130.95

2269.8 35.45 1.786 338.3 0.8 0.02 8.092 19.08

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 3 29.4 34.83 8.547 Alk =

(69.547*Sal)

- 130.95

2291.4 37.07 1.786 341.2 0.8 0.02 8.091 19.08

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 4 29.4 34.70 8.548 Alk =

(69.547*Sal)

- 130.95

2282.3 25.18 1.786 320.0 0.8 0.02 8.112 19.31

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 5 29.5 34.71 8.547 Alk =

(69.547*Sal)

- 130.95

2283.0 14.02 1.786 300.0 0.8 0.02 8.133 19.60

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 6 29.5 34.81 8.547 Alk =

(69.547*Sal)

- 130.95

2290.0 8.37 1.786 289.9 0.8 0.02 8.146 19.75

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 7 29.6 34.58 8.547 Alk =

(69.547*Sal)

- 130.95

2274.0 4.56 1.786 283.1 0.8 0.02 8.152 19.83

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 8 29.4 34.77 8.548 Alk =

(69.547*Sal)

- 130.95

2287.2 1.13 1.786 277.0 0.8 0.02 8.161 19.93

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 9 29.5 34.32 8.549 Alk =

(69.547*Sal)

- 130.95

2255.9 16.69 1.786 304.8 0.8 0.02 8.125 19.47

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 10 29.7 34.32 8.547 Alk =

(69.547*Sal)

- 130.95

2255.9 39.12 1.786 344.9 0.8 0.02 8.083 18.99
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 11 29.8 34.39 8.545 Alk =

(69.547*Sal)

- 130.95

2260.8 44.41 1.786 354.3 0.8 0.02 8.075 18.90

GGC48 Marshall,

B.

161 0 157.5 0 0.0816 12 29.8 34.14 8.547 Alk =

(69.547*Sal)

- 130.95

2243.4 31.44 1.786 331.1 0.8 0.02 8.096 19.14

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 1 29.5 34.61 8.548 Alk =

(69.547*Sal)

- 130.95

2276.1 43.51 1.786 352.7 0.8 0.02 8.078 18.92

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 2 29.3 34.37 8.551 Alk =

(69.547*Sal)

- 130.95

2259.4 41.78 1.786 349.6 0.8 0.02 8.080 18.89

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 3 29.1 34.80 8.551 Alk =

(69.547*Sal)

- 130.95

2289.3 41.31 1.786 348.8 0.8 0.02 8.084 18.94

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 4 29.0 35.10 8.550 Alk =

(69.547*Sal)

- 130.95

2310.1 23.96 1.786 317.8 0.8 0.02 8.118 19.36

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 5 29.3 34.86 8.549 Alk =

(69.547*Sal)

- 130.95

2293.5 21.05 1.786 312.6 0.8 0.02 8.121 19.42

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 6 29.3 34.86 8.548 Alk =

(69.547*Sal)

- 130.95

2293.5 30.73 1.786 329.9 0.8 0.02 8.103 19.21

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 7 29.5 34.55 8.548 Alk =

(69.547*Sal)

- 130.95

2271.9 26.77 1.786 322.8 0.8 0.02 8.108 19.27

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 8 29.4 34.81 8.547 Alk =

(69.547*Sal)

- 130.95

2290.0 9.62 1.786 292.2 0.8 0.02 8.143 19.72
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 9 29.5 34.32 8.549 Alk =

(69.547*Sal)

- 130.95

2255.9 18.08 1.786 307.3 0.8 0.02 8.123 19.43

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 10 29.5 34.22 8.550 Alk =

(69.547*Sal)

- 130.95

2248.9 43.05 1.786 351.9 0.8 0.02 8.076 18.86

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 11 29.6 34.67 8.546 Alk =

(69.547*Sal)

- 130.95

2280.2 28.61 1.786 326.1 0.8 0.02 8.105 19.26

GGC48 Marshall,

B.

161 0 162.5 0 0.4444 12 29.7 34.27 8.548 Alk =

(69.547*Sal)

- 130.95

2252.4 48.75 1.786 362.1 0.8 0.02 8.066 18.78

Interpolated average 8.102 19.20

Interpolated intraannual variation 0.066 0.81

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/21/04 25.9 40.65 8.557 n/a: Data

from NMP

2499 G. of Aqaba as-

sumed to be well

mixed

275 0.95 0.02 8.182 20.09

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/24/04 21.3 40.76 8.611 n/a: Data

from NMP

2498 G. of Aqaba as-

sumed to be well

mixed

275 1.03 0.05 8.190 19.51

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/23/04 21.2 40.83 8.612 n/a: Data

from NMP

2488 G. of Aqaba as-

sumed to be well

mixed

275 1.28 0.08 8.189 19.48

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

4/20/04 21.7 40.78 8.607 n/a: Data

from NMP

2489 G. of Aqaba as-

sumed to be well

mixed

275 0.83 0.01 8.188 19.54

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

5/17/04 23.2 40.63 8.589 n/a: Data

from NMP

2524 G. of Aqaba as-

sumed to be well

mixed

275 0.88 0.01 8.191 19.79
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/21/04 25.85 40.82 8.557 n/a: Data

from NMP

2515 G. of Aqaba as-

sumed to be well

mixed

275 0.66 0.02 8.184 20.12

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/22/04 22.5 40.78 8.597 n/a: Data

from NMP

2518 G. of Aqaba as-

sumed to be well

mixed

275 0.69 0.06 8.191 19.70

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/19/05 22 40.95 8.602 n/a: Data

from NMP

2514 G. of Aqaba as-

sumed to be well

mixed

275 0.94 0.04 8.191 19.63

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/16/05 21.4 41.02 8.609 n/a: Data

from NMP

2499 G. of Aqaba as-

sumed to be well

mixed

275 1.08 0.07 8.190 19.53

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/20/05 21.8 40.95 8.605 n/a: Data

from NMP

2512 G. of Aqaba as-

sumed to be well

mixed

275 0.61 0.04 8.191 19.60

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

4/14/05 22.8 40.68 8.594 n/a: Data

from NMP

2513 G. of Aqaba as-

sumed to be well

mixed

275 0.71 0.05 8.190 19.72

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

5/18/05 24 40.70 8.580 n/a: Data

from NMP

2506 G. of Aqaba as-

sumed to be well

mixed

275 0.72 0.03 8.187 19.86

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/14/05 25.8 40.80 8.558 n/a: Data

from NMP

2526 G. of Aqaba as-

sumed to be well

mixed

275 0.70 0.04 8.186 20.13

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/10/05 27 40.78 8.544 n/a: Data

from NMP

2526 G. of Aqaba as-

sumed to be well

mixed

275 0.48 0.04 8.183 20.28

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/10/05 26.5 40.75 8.550 n/a: Data

from NMP

2522 G. of Aqaba as-

sumed to be well

mixed

275 0.78 0.03 8.184 20.21
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

10/27/05 24.4 40.73 8.575 n/a: Data

from NMP

2518 G. of Aqaba as-

sumed to be well

mixed

275 0.43 0.04 8.188 19.94

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

11/22/05 23.2 40.76 8.589 n/a: Data

from NMP

2531 G. of Aqaba as-

sumed to be well

mixed

275 0.86 0.03 8.192 19.81

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/13/05 22.8 40.74 8.594 n/a: Data

from NMP

2549 G. of Aqaba as-

sumed to be well

mixed

275 0.32 0.05 8.195 19.79

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/17/06 21.5 40.78 8.609 n/a: Data

from NMP

2497 G. of Aqaba as-

sumed to be well

mixed

275 0.90 0.04 8.190 19.53

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/19/06 21.5 40.64 8.610 n/a: Data

from NMP

2507 G. of Aqaba as-

sumed to be well

mixed

275 0.61 0.03 8.192 19.54

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/20/06 22.8 40.52 8.595 n/a: Data

from NMP

2525 G. of Aqaba as-

sumed to be well

mixed

275 1.01 0.02 8.192 19.74

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/13/06 23.3 40.61 8.588 n/a: Data

from NMP

2508 G. of Aqaba as-

sumed to be well

mixed

275 0.39 0.07 8.189 19.78

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

7/11/06 25.6 40.64 8.561 n/a: Data

from NMP

2513 G. of Aqaba as-

sumed to be well

mixed

275 0.64 0.01 8.185 20.08

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/6/06 27.2 40.78 8.542 n/a: Data

from NMP

2521 G. of Aqaba as-

sumed to be well

mixed

275 0.47 0.02 8.182 20.30

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

9/19/06 26.2 40.72 8.554 n/a: Data

from NMP

2513 G. of Aqaba as-

sumed to be well

mixed

275 0.47 0.00 8.183 20.16



A
p
p
en

d
ix

B
.
S
u
pplem

en
tary

M
aterials:

H
en

ehan
et

al.
(2013)

236

Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

10/16/06 25.8 40.73 8.558 n/a: Data

from NMP

2510 G. of Aqaba as-

sumed to be well

mixed

275 0.53 0.02 8.184 20.10

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

11/20/06 23.9 40.79 8.580 n/a: Data

from NMP

2514 G. of Aqaba as-

sumed to be well

mixed

275 0.47 0.02 8.188 19.87

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/14/06 22.7 40.82 8.594 n/a: Data

from NMP

2522 G. of Aqaba as-

sumed to be well

mixed

275 0.55 0.00 8.191 19.73

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/14/07 21.5 40.79 8.609 n/a: Data

from NMP

2524 G. of Aqaba as-

sumed to be well

mixed

275 0.67 0.03 8.194 19.58

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/11/07 21.2 40.76 8.613 n/a: Data

from NMP

2518 G. of Aqaba as-

sumed to be well

mixed

275 0.88 0.07 8.193 19.53

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/11/07 21.1 40.75 8.614 n/a: Data

from NMP

2516 G. of Aqaba as-

sumed to be well

mixed

275 1.03 0.11 8.193 19.51

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

4/15/07 21.1 40.67 8.614 n/a: Data

from NMP

2502 G. of Aqaba as-

sumed to be well

mixed

275 1.03 0.05 8.191 19.48

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

5/13/07 23.4 40.68 8.587 n/a: Data

from NMP

2506 G. of Aqaba as-

sumed to be well

mixed

275 0.55 0.01 8.188 19.79

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/17/07 23.7 40.68 8.583 n/a: Data

from NMP

2501 G. of Aqaba as-

sumed to be well

mixed

275 0.72 0.04 8.187 19.82

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

7/16/07 26.8 40.79 8.546 n/a: Data

from NMP

2500 G. of Aqaba as-

sumed to be well

mixed

275 0.60 0.00 8.180 20.21
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/8/07 27.4 40.83 8.539 n/a: Data

from NMP

2509 G. of Aqaba as-

sumed to be well

mixed

275 0.71 0.10 8.180 20.30

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

9/2/07 27.7 40.86 8.535 n/a: Data

from NMP

2506 G. of Aqaba as-

sumed to be well

mixed

275 0.59 0.03 8.179 20.34

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

10/21/07 24.8 40.78 8.570 n/a: Data

from NMP

2508 G. of Aqaba as-

sumed to be well

mixed

275 0.67 0.02 8.185 19.97

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

11/12/07 24.1 40.83 8.578 n/a: Data

from NMP

2525 G. of Aqaba as-

sumed to be well

mixed

275 0.69 0.02 8.189 19.92

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/20/07 22.8 40.82 8.593 n/a: Data

from NMP

2506 G. of Aqaba as-

sumed to be well

mixed

275 0.86 0.05 8.189 19.71

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/15/08 21.6 40.82 8.608 n/a: Data

from NMP

2499 G. of Aqaba as-

sumed to be well

mixed

275 0.88 0.07 8.190 19.55

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/11/08 21 40.73 8.615 n/a: Data

from NMP

2516 G. of Aqaba as-

sumed to be well

mixed

275 1.30 0.15 8.193 19.50

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/17/08 21 40.68 8.615 n/a: Data

from NMP

2505 G. of Aqaba as-

sumed to be well

mixed

275 1.67 0.17 8.192 19.48

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

4/13/08 21.4 40.64 8.611 n/a: Data

from NMP

2501 G. of Aqaba as-

sumed to be well

mixed

275 0.81 0.02 8.191 19.52

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

5/11/08 22.3 40.59 8.600 n/a: Data

from NMP

2505 G. of Aqaba as-

sumed to be well

mixed

275 0.83 0.05 8.190 19.64
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/16/08 23.9 40.69 8.581 n/a: Data

from NMP

2506 G. of Aqaba as-

sumed to be well

mixed

275 0.77 0.04 8.187 19.85

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

7/9/08 25.9 40.81 8.557 n/a: Data

from NMP

2508 G. of Aqaba as-

sumed to be well

mixed

275 0.84 0.02 8.183 20.11

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/17/08 27.5 40.83 8.538 n/a: Data

from NMP

2509 G. of Aqaba as-

sumed to be well

mixed

275 0.92 0.06 8.180 20.32

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

9/14/08 27.4 40.79 8.539 n/a: Data

from NMP

2505 G. of Aqaba as-

sumed to be well

mixed

275 0.98 0.06 8.180 20.30

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

10/26/08 25 40.74 8.568 n/a: Data

from NMP

2501 G. of Aqaba as-

sumed to be well

mixed

275 0.91 0.07 8.184 19.98

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/14/08 23.3 40.51 8.589 n/a: Data

from NMP

2511 G. of Aqaba as-

sumed to be well

mixed

275 1.09 0.05 8.189 19.78

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

1/13/09 22 40.67 8.603 n/a: Data

from NMP

2491 G. of Aqaba as-

sumed to be well

mixed

275 0.22 0.39 8.188 19.58

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

2/22/09 21.6 40.59 8.609 n/a: Data

from NMP

2512 G. of Aqaba as-

sumed to be well

mixed

275 0.21 0.23 8.192 19.56

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

3/17/09 21.4 40.52 8.611 n/a: Data

from NMP

2516 G. of Aqaba as-

sumed to be well

mixed

275 0.04 0.88 8.193 19.54

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

4/19/09 21.5 40.55 8.610 n/a: Data

from NMP

2490 G. of Aqaba as-

sumed to be well

mixed

275 0.03 0.06 8.189 19.51
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Site Nearest Taka-

hashi Sites

From Takahashi et al. (2009)

Site Archive Long

(�)

Lat

(�)

Long

(�)

Lat

(�)

1/(s.s.

dist.

from

site)

Month SST

(C)

S

(psu)

pK⇤

B Regional

Sal/Alk

corre-

lation

used

TAlk

(µmol/

kg)

�pCO2(ppm)Gloor

cor-

rec-

tion

factor

pCO2 SiO2�
4 PO�

4 pH �11B
B(OH)�4

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

5/10/09 22.1 40.57 8.603 n/a: Data

from NMP

2492 G. of Aqaba as-

sumed to be well

mixed

275 0.00 0.00 8.189 19.59

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

6/18/09 24.1 40.56 8.579 n/a: Data

from NMP

2501 G. of Aqaba as-

sumed to be well

mixed

275 0.01 0.09 8.186 19.86

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

7/20/09 26.7 40.57 8.548 n/a: Data

from NMP

2513 G. of Aqaba as-

sumed to be well

mixed

275 0.02 0.12 8.183 20.22

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

8/18/09 26.7 40.62 8.548 n/a: Data

from NMP

2516 G. of Aqaba as-

sumed to be well

mixed

275 0.04 0.02 8.183 20.22

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

9/13/09 26.8 40.66 8.547 n/a: Data

from NMP

2507 G. of Aqaba as-

sumed to be well

mixed

275 0.04 0.03 8.182 20.22

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

10/18/09 25.8 40.55 8.559 n/a: Data

from NMP

2496 G. of Aqaba as-

sumed to be well

mixed

275 0.10 0.06 8.182 20.07

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

11/16/09 25.3 40.58 8.565 n/a: Data

from NMP

2496 G. of Aqaba as-

sumed to be well

mixed

275 0.02 0.47 8.183 20.01

Eilat Kısakürek,

B.

34.92 29.50 Periodic data from Eilat

Monitoring Program

12/28/09 23 40.63 8.592 n/a: Data

from NMP

2507 G. of Aqaba as-

sumed to be well

mixed

275 0.22 0.22 8.189 19.74

Average 8.188 19.84

Intraannual variation (2�) 0.008 0.56

Table B.2: Carbonate System Parameters for Coretop Sites
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MC497 Tübingen 63.31 23.53 62.5 20 0.076 1 24.10 36.54 8.599 2386.1 28.0 0.59 291.5 3.19 0.51 8.161 19.30 2001.0 0.0678 0.0584 268 6.34 451.6

MC497 Tübingen 63.31 23.53 62.5 20 0.076 2 23.69 36.44 8.604 2379.8 6.9 0.59 279.1 3.19 0.51 8.176 19.41 1990.6 0.0691 0.0595 270 6.40 450.4

MC497 Tübingen 63.31 23.53 62.5 20 0.076 3 24.61 36.49 8.593 2383.0 12.9 0.59 282.6 3.19 0.51 8.171 19.48 1986.9 0.0702 0.0602 275 6.52 451.0

MC497 Tübingen 63.31 23.53 62.5 20 0.076 4 26.62 36.54 8.570 2386.1 24.5 0.59 289.5 3.19 0.51 8.159 19.64 1975.2 0.0728 0.0620 285 6.78 451.6

MC497 Tübingen 63.31 23.53 62.5 20 0.076 5 28.75 36.57 8.545 2388.0 36.8 0.59 296.7 3.19 0.51 8.148 19.80 1961.7 0.0755 0.0638 296 7.06 452.0

MC497 Tübingen 63.31 23.53 62.5 20 0.076 6 29.58 36.59 8.535 2389.3 44.3 0.59 301.2 3.19 0.51 8.141 19.84 1958.0 0.0763 0.0644 299 7.15 452.3

MC497 Tübingen 63.31 23.53 62.5 20 0.076 7 28.62 36.35 8.548 2374.2 79.1 0.59 321.8 3.19 0.51 8.119 19.42 1972.8 0.0702 0.0600 279 6.68 449.3

MC497 Tübingen 63.31 23.53 62.5 20 0.076 8 27.47 36.53 8.560 2385.5 85.3 0.59 325.4 3.19 0.51 8.119 19.26 1993.9 0.0680 0.0584 273 6.50 451.5

MC497 Tübingen 63.31 23.53 62.5 20 0.076 9 27.59 36.37 8.559 2375.4 90.9 0.59 328.7 3.19 0.51 8.114 19.21 1988.3 0.0673 0.0579 270 6.44 449.5

MC497 Tübingen 63.31 23.53 62.5 20 0.076 10 28.11 36.37 8.553 2375.4 50.1 0.59 304.6 3.19 0.51 8.139 19.58 1965.7 0.0724 0.0616 285 6.80 449.5

MC497 Tübingen 63.31 23.53 62.5 20 0.076 11 27.22 36.55 8.563 2386.8 27.3 0.59 291.1 3.19 0.51 8.157 19.69 1971.2 0.0736 0.0626 288 6.87 451.8

MC497 Tübingen 63.31 23.53 62.5 20 0.076 12 25.50 36.54 8.583 2386.1 29.0 0.59 292.2 3.19 0.51 8.158 19.46 1988.1 0.0702 0.0601 276 6.57 451.6

MC497 Tübingen 63.31 23.53 62.5 24 1.14 1 24.80 36.38 8.592 2376.1 37.0 0.59 296.9 3.19 0.51 8.153 19.29 1991.7 0.0677 0.0584 267 6.35 449.7

MC497 Tübingen 63.31 23.53 62.5 24 1.14 2 24.66 36.37 8.593 2375.4 24.4 0.59 289.4 3.19 0.51 8.162 19.37 1986.8 0.0688 0.0592 270 6.41 449.5

MC497 Tübingen 63.31 23.53 62.5 24 1.14 3 25.79 36.41 8.580 2378.0 36.1 0.59 296.3 3.19 0.51 8.152 19.42 1983.1 0.0697 0.0598 274 6.52 450.0

MC497 Tübingen 63.31 23.53 62.5 24 1.14 4 27.67 36.49 8.558 2383.0 28.7 0.59 292.0 3.19 0.51 8.154 19.73 1965.0 0.0742 0.0630 290 6.91 451.0

MC497 Tübingen 63.31 23.53 62.5 24 1.14 5 28.94 36.48 8.543 2382.4 24.8 0.59 289.6 3.19 0.51 8.155 19.92 1950.3 0.0771 0.0650 299 7.15 450.9

MC497 Tübingen 63.31 23.53 62.5 24 1.14 6 28.89 36.35 8.545 2374.2 31.4 0.59 293.5 3.19 0.51 8.150 19.83 1948.6 0.0759 0.0641 295 7.06 449.3

MC497 Tübingen 63.31 23.53 62.5 24 1.14 7 27.12 36.35 8.565 2374.2 23.7 0.59 289.0 3.19 0.51 8.158 19.68 1962.1 0.0734 0.0624 286 6.82 449.3

MC497 Tübingen 63.31 23.53 62.5 24 1.14 8 26.02 36.35 8.578 2374.2 63.6 0.59 312.6 3.19 0.51 8.133 19.22 1990.7 0.0671 0.0578 267 6.36 449.3

MC497 Tübingen 63.31 23.53 62.5 24 1.14 9 26.77 36.19 8.570 2364.1 40.5 0.59 298.9 3.19 0.51 8.146 19.47 1966.5 0.0705 0.0603 276 6.59 447.3

MC497 Tübingen 63.31 23.53 62.5 24 1.14 10 28.00 36.26 8.555 2368.5 33.4 0.59 294.7 3.19 0.51 8.149 19.69 1954.4 0.0738 0.0626 287 6.87 448.2

MC497 Tübingen 63.31 23.53 62.5 24 1.14 11 27.52 36.38 8.560 2376.1 23.0 0.59 288.6 3.19 0.51 8.158 19.74 1959.1 0.0743 0.0631 289 6.90 449.7

MC497 Tübingen 63.31 23.53 62.5 24 1.14 12 25.98 36.41 8.578 2378.0 39.5 0.59 298.3 3.19 0.51 8.150 19.42 1982.9 0.0697 0.0597 275 6.53 450.0

MC497 Tübingen 63.31 23.53 67.5 20 0.033 1 25.33 36.33 8.586 2372.9 29.0 0.59 292.2 3.19 0.51 8.157 19.41 1980.9 0.0694 0.0596 272 6.48 449.0

MC497 Tübingen 63.31 23.53 67.5 20 0.033 2 25.25 36.12 8.588 2359.7 5.4 0.59 278.2 3.19 0.51 8.172 19.58 1961.5 0.0715 0.0611 276 6.58 446.4

MC497 Tübingen 63.31 23.53 67.5 20 0.033 3 26.19 36.12 8.577 2359.7 -1.6 0.59 274.1 3.19 0.51 8.176 19.76 1949.0 0.0741 0.0630 284 6.79 446.4

MC497 Tübingen 63.31 23.53 67.5 20 0.033 4 27.72 36.23 8.559 2366.6 14.4 0.59 283.5 3.19 0.51 8.163 19.82 1946.7 0.0754 0.0638 291 6.95 447.8

MC497 Tübingen 63.31 23.53 67.5 20 0.033 5 29.03 36.30 8.543 2371.0 21.3 0.59 287.6 3.19 0.51 8.156 19.93 1940.3 0.0773 0.0651 298 7.14 448.7

MC497 Tübingen 63.31 23.53 67.5 20 0.033 6 29.42 36.51 8.538 2384.2 22.7 0.59 288.4 3.19 0.51 8.155 20 1945.9 0.0784 0.0659 304 7.26 451.3

MC497 Tübingen 63.31 23.53 67.5 20 0.033 7 28.48 36.45 8.549 2380.5 20.2 0.59 286.9 3.19 0.51 8.158 19.89 1951.4 0.0767 0.0647 297 7.10 450.5

MC497 Tübingen 63.31 23.53 67.5 20 0.033 8 27.55 36.49 8.559 2383.0 27.5 0.59 291.2 3.19 0.51 8.156 19.72 1965.6 0.0741 0.0629 290 6.90 451.0
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MC497 Tübingen 63.31 23.53 67.5 20 0.033 9 27.86 36.19 8.557 2364.1 37.0 0.59 296.8 3.19 0.51 8.147 19.64 1954.5 0.0730 0.0621 284 6.80 447.3

MC497 Tübingen 63.31 23.53 67.5 20 0.033 10 28.41 36.05 8.552 2355.3 32.8 0.59 294.4 3.19 0.51 8.148 19.72 1941.5 0.0741 0.0629 287 6.88 445.6

MC497 Tübingen 63.31 23.53 67.5 20 0.033 11 27.85 36.27 8.557 2369.2 16.1 0.59 284.5 3.19 0.51 8.161 19.83 1948.0 0.0755 0.0639 292 6.97 448.3

MC497 Tübingen 63.31 23.53 67.5 20 0.033 12 26.43 36.34 8.573 2373.6 15.7 0.59 284.3 3.19 0.51 8.165 19.66 1964.4 0.0730 0.0622 284 6.76 449.2

n/d, Pre-ind. CO2 '275 ppm Interpolatedr average 26.86 36.37 8.568 2375.7 34.0 295.1 8.152 19.57 1970.2 0.0719 0.0613 281 6.71 449.6

Interpolatedr intraannual variation 3.64 0.21 0.042 13.2 24.6 18.1 0.020 0.45 39.3 0.0082 0.0058 27 0.69 2.7

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 1 17.72 36.25 8.676 2375.6 -21.1 0.50 264.4 0.80 0.10 8.202 18.86 2033.1 0.0609 0.0535 238 5.62 448.1

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 2 17.12 36.26 8.684 2376.1 -47.1 0.50 251.5 0.80 0.10 8.220 18.99 2028.1 0.0623 0.0546 241 5.69 448.2

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 3 16.98 36.22 8.685 2374.0 -37.4 0.50 256.3 0.80 0.10 8.213 18.88 2032.1 0.0610 0.0536 237 5.60 447.7

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 4 17.40 36.22 8.680 2374.0 -31.1 0.50 259.5 0.80 0.10 8.209 18.89 2030.8 0.0612 0.0537 238 5.62 447.7

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 5 18.42 36.24 8.668 2375.1 -24.1 0.50 263.0 0.80 0.10 8.203 18.97 2025.0 0.0623 0.0545 243 5.74 447.9

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 6 20.45 36.28 8.643 2377.2 -19.1 0.50 265.5 0.80 0.10 8.198 19.20 2009.5 0.0655 0.0569 255 6.04 448.4

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 7 22.69 36.35 8.617 2381.0 15.3 0.50 282.6 0.80 0.10 8.174 19.23 2005.0 0.0664 0.0575 262 6.20 449.3

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 8 24.20 36.43 8.598 2385.4 25.2 0.50 287.6 0.80 0.10 8.166 19.36 1997.5 0.0684 0.0589 270 6.41 450.3

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 9 23.99 36.43 8.601 2385.4 -1.3 0.50 274.4 0.80 0.10 8.182 19.53 1988.7 0.0705 0.0605 276 6.54 450.3

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 10 22.39 36.44 8.620 2385.9 -10.7 0.50 269.7 0.80 0.10 8.190 19.40 2000.4 0.0685 0.0591 268 6.34 450.4

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 11 20.48 36.35 8.643 2381.0 -24.0 0.50 263.0 0.80 0.10 8.201 19.25 2009.7 0.0662 0.0574 258 6.10 449.3

MC436 Tübingen -21.06 39.80 -22.5 36 0.061 12 18.84 36.29 8.663 2377.8 -23.1 0.50 263.4 0.80 0.10 8.202 19.02 2023.3 0.0630 0.0551 246 5.81 448.5

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 1 15.72 35.93 8.702 2358.2 -20.7 0.50 264.7 0.80 0.10 8.201 18.55 2039.6 0.0569 0.0504 221 5.23 444.1

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 2 15.23 35.94 8.708 2358.8 -29.9 0.50 260.1 0.80 0.10 8.208 18.56 2040.7 0.0569 0.0505 221 5.22 444.2

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 3 15.18 35.98 8.709 2361.0 -23.6 0.50 263.2 0.80 0.10 8.204 18.51 2045.2 0.0563 0.0500 219 5.18 444.7

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 4 15.64 35.93 8.703 2358.2 -25.5 0.50 262.2 0.80 0.10 8.205 18.58 2038.4 0.0572 0.0507 222 5.25 444.1

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 5 16.69 35.98 8.690 2361.0 -34.3 0.50 257.8 0.80 0.10 8.210 18.79 2027.1 0.0598 0.0527 232 5.48 444.7

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 6 18.60 36.04 8.667 2364.2 -17.8 0.50 266.1 0.80 0.10 8.198 18.92 2018.5 0.0616 0.0540 240 5.68 445.5

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 7 21.14 36.09 8.636 2366.9 -13.4 0.50 268.3 0.80 0.10 8.192 19.22 1998.5 0.0658 0.0571 256 6.07 446.1

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 8 22.54 36.07 8.620 2365.8 14.7 0.50 282.3 0.80 0.10 8.173 19.18 1996.0 0.0656 0.0569 257 6.11 445.8

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 9 22.06 36.12 8.625 2368.5 8.0 0.50 279.0 0.80 0.10 8.178 19.18 1999.6 0.0655 0.0568 257 6.09 446.4

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 10 20.19 36.03 8.648 2363.7 -15.4 0.50 267.3 0.80 0.10 8.194 19.11 2004.3 0.0642 0.0559 250 5.92 445.3

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 11 18.20 36.00 8.672 2362.0 -24.7 0.50 262.6 0.80 0.10 8.202 18.92 2017.9 0.0615 0.0540 239 5.66 445.0

MC436 Tübingen -21.06 39.80 -22.5 40 0.473 12 16.77 35.98 8.689 2361.0 -33.8 0.50 258.1 0.80 0.10 8.210 18.80 2026.6 0.0599 0.0527 232 5.49 444.7
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MC436 Tübingen -21.06 39.80 -17.5 36 0.037 1 17.53 36.29 8.678 2377.8 -21.5 0.50 264.2 0.80 0.10 8.202 18.84 2036.2 0.0606 0.0533 237 5.60 448.5

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 2 16.94 36.25 8.686 2375.6 -28.5 0.50 260.7 0.80 0.10 8.207 18.81 2037.3 0.0602 0.0530 235 5.54 448.1

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 3 16.80 36.23 8.688 2374.5 -38.8 0.50 255.6 0.80 0.10 8.214 18.87 2033.6 0.0609 0.0535 236 5.58 447.8

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 4 17.16 36.24 8.683 2375.1 -44.0 0.50 253.0 0.80 0.10 8.218 18.96 2028.4 0.0620 0.0544 240 5.67 447.9

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 5 18.12 36.26 8.671 2376.1 -27.0 0.50 261.5 0.80 0.10 8.205 18.96 2027.3 0.0621 0.0544 242 5.72 448.2

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 6 20.07 36.31 8.648 2378.9 -6.9 0.50 271.6 0.80 0.10 8.190 19.06 2019.3 0.0637 0.0556 250 5.91 448.8

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 7 22.13 36.38 8.623 2382.7 33.3 0.50 291.6 0.80 0.10 8.164 19.04 2018.4 0.0639 0.0556 254 6.01 449.7

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 8 23.62 36.49 8.605 2388.6 23.4 0.50 286.7 0.80 0.10 8.168 19.31 2004.5 0.0676 0.0583 267 6.34 451.0

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 9 23.55 36.50 8.606 2389.2 21.9 0.50 285.9 0.80 0.10 8.169 19.31 2004.9 0.0677 0.0584 267 6.34 451.1

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 10 22.08 36.47 8.623 2387.5 3.0 0.50 276.5 0.80 0.10 8.182 19.26 2010.2 0.0667 0.0577 262 6.21 450.8

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 11 20.19 36.43 8.646 2385.4 -27.5 0.50 261.3 0.80 0.10 8.204 19.25 2013.9 0.0661 0.0574 258 6.09 450.3

MC436 Tübingen -21.06 39.80 -17.5 36 0.037 12 18.60 36.39 8.665 2383.2 -24.2 0.50 262.9 0.80 0.10 8.204 19.01 2028.8 0.0629 0.0550 246 5.81 449.8

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 1 15.57 35.96 8.704 2359.9 -17.2 0.50 266.4 0.80 0.10 8.199 18.51 2043.5 0.0564 0.0501 220 5.20 444.5

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 2 15.07 35.92 8.710 2357.7 -33.5 0.50 258.2 0.80 0.10 8.211 18.56 2039.9 0.0569 0.0505 220 5.21 444.0

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 3 14.97 35.98 8.711 2361.0 -28.4 0.50 260.8 0.80 0.10 8.207 18.52 2045.2 0.0564 0.0501 219 5.18 444.7

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 4 15.34 35.96 8.707 2359.9 -35.4 0.50 257.3 0.80 0.10 8.212 18.62 2038.2 0.0576 0.0510 223 5.27 444.5

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 5 16.38 35.99 8.694 2361.5 -39.9 0.50 255.1 0.80 0.10 8.214 18.80 2028.0 0.0598 0.0527 231 5.47 444.8

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 6 18.39 36.02 8.669 2363.1 -16.0 0.50 267.0 0.80 0.10 8.197 18.88 2020.5 0.0611 0.0536 238 5.63 445.2

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 7 20.75 36.08 8.641 2366.4 18.2 0.50 284.1 0.80 0.10 8.173 18.93 2014.4 0.0622 0.0544 245 5.81 445.9

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 8 22.15 36.09 8.624 2366.9 10.9 0.50 280.5 0.80 0.10 8.176 19.16 1998.9 0.0653 0.0567 256 6.08 446.1

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 9 21.81 36.14 8.628 2369.6 6.0 0.50 278.0 0.80 0.10 8.179 19.16 2001.9 0.0653 0.0566 256 6.07 446.7

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 10 20.03 36.09 8.649 2366.9 -13.4 0.50 268.3 0.80 0.10 8.193 19.08 2008.9 0.0638 0.0556 249 5.89 446.1

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 11 18.03 36.06 8.674 2365.3 -26.4 0.50 261.8 0.80 0.10 8.204 18.91 2021.0 0.0615 0.0539 239 5.65 445.7

MC436 Tübingen -21.06 39.80 -17.5 40 0.079 12 16.59 36.04 8.691 2364.2 -26.9 0.50 261.5 0.80 0.10 8.206 18.73 2033.3 0.0591 0.0521 230 5.43 445.5

n/d, Pre-ind. CO2 '275 ppm Interpolatedr average 18.40 36.06 8.669 2365.2 -17.4 266.3 8.198 18.89 2021.0 0.0614 0.0538 239 5.66 445.7

Interpolatedr intraannual variation 3.74 0.09 0.045 5.1 23.5 11.8 0.018 0.51 23.7 0.0049 0.0036 20 0.48 1.2

F111 NIWA 174.98 -48.95 172.5 -52 0.065 1 9.51 34.30 8.789 2284.3 -21.7 0.30 265.0 1.8 0.73 8.196 17.56 2042.8 0.0442 0.0403 168 4.02 423.9

F111 NIWA 174.98 -48.95 172.5 -52 0.065 2 9.72 34.32 8.786 2284.8 -5.1 0.30 270.0 1.8 0.73 8.189 17.52 2044.8 0.0439 0.0400 167 4.00 424.2

F111 NIWA 174.98 -48.95 172.5 -52 0.065 3 9.30 34.29 8.791 2284.3 -15.0 0.30 267.0 1.8 0.73 8.193 17.51 2045.9 0.0437 0.0399 166 3.97 423.8

F111 NIWA 174.98 -48.95 172.5 -52 0.065 4 8.68 34.30 8.799 2286.2 -3.7 0.30 270.4 1.8 0.73 8.189 17.38 2054.7 0.0424 0.0388 162 3.86 423.9
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F111 NIWA 174.98 -48.95 172.5 -52 0.065 5 7.97 34.21 8.809 2283.7 -3.8 0.30 270.4 1.8 0.73 8.188 17.29 2058.6 0.0413 0.0379 157 3.76 422.8

F111 NIWA 174.98 -48.95 172.5 -52 0.065 6 7.43 34.16 8.816 2282.7 -9.3 0.30 268.7 1.8 0.73 8.190 17.24 2061.2 0.0408 0.0374 155 3.71 422.2

F111 NIWA 174.98 -48.95 172.5 -52 0.065 7 7.18 34.28 8.819 2289.1 -7.9 0.30 269.1 1.8 0.73 8.190 17.21 2068.4 0.0406 0.0373 155 3.69 423.7

F111 NIWA 174.98 -48.95 172.5 -52 0.065 8 7.08 34.14 8.821 2282.7 -7.2 0.30 269.4 1.8 0.73 8.189 17.18 2064.5 0.0402 0.0370 153 3.66 422.0

F111 NIWA 174.98 -48.95 172.5 -52 0.065 9 7.07 34.27 8.820 2288.9 -6.0 0.30 269.7 1.8 0.73 8.190 17.19 2069.5 0.0403 0.0371 154 3.67 423.6

F111 NIWA 174.98 -48.95 172.5 -52 0.065 10 7.26 34.52 8.816 2300.7 -0.5 0.30 271.4 1.8 0.73 8.189 17.22 2077.9 0.0407 0.0374 156 3.72 426.7

F111 NIWA 174.98 -48.95 172.5 -52 0.065 11 7.79 34.60 8.809 2303.3 -10.8 0.30 268.3 1.8 0.73 8.193 17.33 2073.5 0.0419 0.0384 161 3.83 427.7

F111 NIWA 174.98 -48.95 172.5 -52 0.065 12 8.69 34.37 8.799 2289.6 -14.3 0.30 267.2 1.8 0.73 8.193 17.44 2055.1 0.0429 0.0393 164 3.91 424.8

F111 NIWA 174.98 -48.95 172.5 -48 0.142 1 11.84 34.32 8.759 2280.4 -49.0 0.30 256.8 1.8 0.73 8.206 17.98 2014.5 0.0488 0.0440 185 4.41 424.2

F111 NIWA 174.98 -48.95 172.5 -48 0.142 2 12.29 34.35 8.753 2281.0 -20.3 0.30 265.4 1.8 0.73 8.194 17.91 2017.3 0.0482 0.0436 183 4.38 424.6

F111 NIWA 174.98 -48.95 172.5 -48 0.142 3 11.70 34.36 8.760 2282.6 -29.1 0.30 262.8 1.8 0.73 8.198 17.88 2021.6 0.0477 0.0432 181 4.33 424.7

F111 NIWA 174.98 -48.95 172.5 -48 0.142 4 10.66 34.37 8.774 2285.1 -25.5 0.30 263.9 1.8 0.73 8.197 17.73 2033.0 0.0461 0.0419 175 4.19 424.8

F111 NIWA 174.98 -48.95 172.5 -48 0.142 5 9.50 34.33 8.789 2285.7 -12.2 0.30 267.8 1.8 0.73 8.192 17.53 2045.9 0.0439 0.0400 167 3.99 424.3

F111 NIWA 174.98 -48.95 172.5 -48 0.142 6 8.55 34.29 8.801 2286.1 -17.4 0.30 266.3 1.8 0.73 8.194 17.42 2053.0 0.0427 0.0391 163 3.89 423.8

F111 NIWA 174.98 -48.95 172.5 -48 0.142 7 7.99 34.45 8.807 2295.3 -17.1 0.30 266.4 1.8 0.73 8.195 17.37 2064.6 0.0422 0.0387 161 3.85 425.8

F111 NIWA 174.98 -48.95 172.5 -48 0.142 8 7.79 34.20 8.811 2283.6 -15.0 0.30 267.0 1.8 0.73 8.193 17.31 2057.9 0.0415 0.0381 158 3.77 422.7

F111 NIWA 174.98 -48.95 172.5 -48 0.142 9 7.86 34.39 8.809 2292.7 -23.0 0.30 264.6 1.8 0.73 8.197 17.37 2062.5 0.0422 0.0386 161 3.84 425.1

F111 NIWA 174.98 -48.95 172.5 -48 0.142 10 8.30 34.62 8.802 2303.0 -17.2 0.30 266.4 1.8 0.73 8.196 17.43 2067.7 0.0429 0.0392 164 3.91 427.9

F111 NIWA 174.98 -48.95 172.5 -48 0.142 11 9.28 34.68 8.789 2303.6 -16.4 0.30 266.6 1.8 0.73 8.196 17.55 2060.2 0.0443 0.0404 170 4.04 428.6

F111 NIWA 174.98 -48.95 172.5 -48 0.142 12 10.61 34.39 8.774 2286.2 -23.9 0.30 264.3 1.8 0.73 8.197 17.72 2034.6 0.0460 0.0418 175 4.18 425.1

F111 NIWA 174.98 -48.95 177.5 -52 0.064 1 9.27 34.24 8.792 2281.9 -11.7 0.30 268.0 1.8 0.73 8.191 17.48 2045.1 0.0434 0.0397 165 3.95 423.2

F111 NIWA 174.98 -48.95 177.5 -52 0.064 2 9.55 34.26 8.788 2282.2 -8.1 0.30 269.1 1.8 0.73 8.190 17.51 2043.7 0.0437 0.0399 166 3.98 423.5

F111 NIWA 174.98 -48.95 177.5 -52 0.064 3 9.08 34.25 8.794 2282.8 -16.7 0.30 266.5 1.8 0.73 8.194 17.48 2046.3 0.0434 0.0396 165 3.94 423.3

F111 NIWA 174.98 -48.95 177.5 -52 0.064 4 8.30 34.22 8.805 2283.3 -5.3 0.30 269.9 1.8 0.73 8.189 17.34 2055.4 0.0418 0.0383 159 3.81 423.0

F111 NIWA 174.98 -48.95 177.5 -52 0.064 5 7.43 34.10 8.816 2279.8 -3.9 0.30 270.3 1.8 0.73 8.188 17.21 2060.1 0.0405 0.0372 154 3.68 421.5

F111 NIWA 174.98 -48.95 177.5 -52 0.064 6 6.82 34.07 8.825 2280.1 -9.6 0.30 268.6 1.8 0.73 8.190 17.15 2064.1 0.0399 0.0367 151 3.62 421.1

F111 NIWA 174.98 -48.95 177.5 -52 0.064 7 6.51 34.23 8.828 2288.5 -7.7 0.30 269.2 1.8 0.73 8.190 17.12 2073.4 0.0396 0.0365 151 3.61 423.1

F111 NIWA 174.98 -48.95 177.5 -52 0.064 8 6.39 34.20 8.830 2287.4 -6.5 0.30 269.6 1.8 0.73 8.189 17.10 2073.8 0.0394 0.0363 150 3.59 422.7

F111 NIWA 174.98 -48.95 177.5 -52 0.064 9 6.45 34.27 8.828 2290.6 -7.0 0.30 269.4 1.8 0.73 8.190 17.12 2075.6 0.0396 0.0364 151 3.61 423.6

F111 NIWA 174.98 -48.95 177.5 -52 0.064 10 6.72 34.35 8.824 2293.8 -10.0 0.30 268.5 1.8 0.73 8.192 17.17 2075.2 0.0401 0.0369 153 3.66 424.6

F111 NIWA 174.98 -48.95 177.5 -52 0.064 11 7.32 34.43 8.816 2296.1 -8.0 0.30 269.1 1.8 0.73 8.191 17.25 2072.5 0.0409 0.0376 157 3.74 425.6

F111 NIWA 174.98 -48.95 177.5 -52 0.064 12 8.33 34.29 8.804 2286.6 -11.1 0.30 268.2 1.8 0.73 8.192 17.37 2056.4 0.0422 0.0386 161 3.84 423.8
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F111 NIWA 174.98 -48.95 177.5 -48 0.137 1 11.67 34.30 8.761 2279.7 -16.1 0.30 266.7 1.8 0.73 8.193 17.81 2022.5 0.0471 0.0426 179 4.27 423.9

F111 NIWA 174.98 -48.95 177.5 -48 0.137 2 12.21 34.31 8.754 2279.2 -15.3 0.30 266.9 1.8 0.73 8.192 17.88 2017.7 0.0478 0.0432 182 4.34 424.1

F111 NIWA 174.98 -48.95 177.5 -48 0.137 3 11.66 34.32 8.761 2280.7 -33.9 0.30 261.3 1.8 0.73 8.200 17.89 2019.5 0.0478 0.0433 181 4.33 424.2

F111 NIWA 174.98 -48.95 177.5 -48 0.137 4 10.56 34.36 8.775 2284.9 -24.9 0.30 264.0 1.8 0.73 8.197 17.72 2033.8 0.0459 0.0417 175 4.17 424.7

F111 NIWA 174.98 -48.95 177.5 -48 0.137 5 9.33 34.31 8.791 2285.2 -12.4 0.30 267.8 1.8 0.73 8.192 17.50 2046.8 0.0436 0.0398 166 3.97 424.1

F111 NIWA 174.98 -48.95 177.5 -48 0.137 6 8.37 34.11 8.804 2277.9 -18.9 0.30 265.8 1.8 0.73 8.194 17.39 2048.1 0.0423 0.0387 161 3.84 421.6

F111 NIWA 174.98 -48.95 177.5 -48 0.137 7 7.84 34.27 8.810 2286.9 -19.7 0.30 265.6 1.8 0.73 8.195 17.34 2059.0 0.0419 0.0384 159 3.80 423.6

F111 NIWA 174.98 -48.95 177.5 -48 0.137 8 7.64 34.20 8.813 2284.0 -20.3 0.30 265.4 1.8 0.73 8.195 17.31 2058.4 0.0415 0.0381 158 3.77 422.7

F111 NIWA 174.98 -48.95 177.5 -48 0.137 9 7.65 34.39 8.812 2293.2 -15.8 0.30 266.7 1.8 0.73 8.194 17.31 2066.1 0.0416 0.0382 159 3.79 425.1

F111 NIWA 174.98 -48.95 177.5 -48 0.137 10 8.05 34.44 8.807 2294.6 -21.1 0.30 265.2 1.8 0.73 8.197 17.39 2062.8 0.0424 0.0388 162 3.86 425.7

F111 NIWA 174.98 -48.95 177.5 -48 0.137 11 8.99 34.47 8.794 2293.8 -11.3 0.30 268.1 1.8 0.73 8.193 17.47 2056.3 0.0434 0.0396 166 3.95 426.0

F111 NIWA 174.98 -48.95 177.5 -48 0.137 12 10.39 34.36 8.777 2285.2 -17.9 0.30 266.1 1.8 0.73 8.194 17.66 2036.9 0.0454 0.0413 173 4.13 424.7

14C age = 4.582ka, CO2 = 271.5 ppm Interpolatedr average 9.08 34.33 8.794 2287.2 -16.9 266.4 8.194 17.49 2049.4 0.0436 0.0398 166 3.96 424.4

Interpolatedr intraannual variation 2.99 0.23 0.024 13.4 4.1 4.1 0.003 0.41 20.4 0.0028 0.0023 10 0.25 1.7

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 1 14.74 34.98 8.719 2308.9 -40.9 0.30 263.0 2 0.75 8.199 18.33 2012.0 0.0539 0.0481 206 4.91 432.4

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 2 15.19 35.01 8.714 2309.9 -43.8 0.30 262.1 2 0.75 8.200 18.41 2008.0 0.0548 0.0488 210 4.99 432.7

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 3 15.10 35.08 8.714 2313.7 -41.2 0.30 262.9 2 0.75 8.200 18.39 2012.1 0.0547 0.0487 209 4.98 433.6

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 4 14.25 35.05 8.725 2313.3 -37.6 0.30 264.0 2 0.75 8.199 18.26 2020.2 0.0531 0.0475 204 4.84 433.2

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 5 13.45 35.05 8.735 2314.5 -27.9 0.30 266.9 2 0.75 8.195 18.12 2030.3 0.0514 0.0462 198 4.70 433.2

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 6 12.61 34.89 8.746 2307.6 -18.2 0.30 269.9 2 0.75 8.191 17.95 2034.8 0.0495 0.0446 190 4.52 431.2

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 7 12.16 34.79 8.752 2303.2 -9.6 0.30 272.4 2 0.75 8.187 17.85 2037.3 0.0483 0.0436 185 4.41 430.0

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 8 11.68 34.83 8.758 2306.2 2.0 0.30 275.9 2 0.75 8.183 17.74 2046.0 0.0471 0.0427 182 4.32 430.5

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 9 11.61 34.86 8.759 2307.9 0.4 0.30 275.4 2 0.75 8.184 17.75 2047.5 0.0472 0.0427 182 4.32 430.9

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 10 11.84 34.87 8.756 2308.0 -18.0 0.30 269.9 2 0.75 8.191 17.85 2041.7 0.0483 0.0436 185 4.41 431.0

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 11 12.66 34.86 8.746 2305.9 -32.6 0.30 265.5 2 0.75 8.197 18.02 2030.0 0.0501 0.0451 192 4.57 430.9

ODP1172C NIWA 149.93 -43.96 147.5 -44 0.170 12 13.76 34.82 8.732 2302.1 -33.9 0.30 265.1 2 0.75 8.196 18.16 2017.3 0.0518 0.0464 198 4.71 430.4

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 1 14.88 35.04 8.717 2311.9 -34.6 0.30 264.9 2 0.75 8.197 18.33 2014.3 0.0539 0.0481 207 4.92 433.1

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 2 15.40 34.97 8.711 2307.5 -23.5 0.30 268.2 2 0.75 8.192 18.34 2009.1 0.0541 0.0482 207 4.94 432.2

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 3 15.21 35.02 8.713 2310.4 -34.2 0.30 265.0 2 0.75 8.196 18.37 2010.4 0.0544 0.0485 208 4.96 432.8

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 4 14.45 35.12 8.722 2316.7 -36.2 0.30 264.4 2 0.75 8.198 18.29 2021.2 0.0535 0.0478 205 4.88 434.1
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ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 5 13.71 35.16 8.731 2320.0 -24.4 0.30 268.0 2 0.75 8.194 18.15 2032.7 0.0519 0.0465 200 4.75 434.6

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 6 12.79 35.06 8.743 2316.2 -22.8 0.30 268.5 2 0.75 8.194 18.01 2038.4 0.0502 0.0452 193 4.59 433.3

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 7 12.17 34.94 8.751 2311.0 -15.8 0.30 270.6 2 0.75 8.191 17.89 2041.5 0.0488 0.0440 188 4.46 431.9

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 8 11.68 34.92 8.758 2310.8 -0.4 0.30 275.2 2 0.75 8.185 17.76 2048.9 0.0474 0.0429 183 4.35 431.6

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 9 11.65 35.02 8.758 2316.1 -1.3 0.30 274.9 2 0.75 8.185 17.78 2052.9 0.0475 0.0430 184 4.37 432.8

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 10 11.92 34.97 8.754 2313.0 -25.0 0.30 267.8 2 0.75 8.195 17.90 2043.2 0.0489 0.0441 188 4.47 432.2

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 11 12.75 34.97 8.744 2311.5 -29.5 0.30 266.5 2 0.75 8.196 18.03 2033.9 0.0503 0.0453 193 4.59 432.2

ODP1172C NIWA 149.93 -43.96 152.5 -44 0.151 12 13.84 34.94 8.731 2308.1 -28.0 0.30 266.9 2 0.75 8.194 18.16 2022.3 0.0518 0.0465 199 4.73 431.9

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 1 18.59 35.42 8.670 2328.4 -30.7 0.30 266.1 2 0.75 8.194 18.83 1993.3 0.0605 0.0532 233 5.53 437.8

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 2 19.45 35.42 8.660 2327.8 -18.7 0.30 269.7 2 0.75 8.188 18.89 1988.0 0.0613 0.0538 236 5.62 437.8

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 3 19.20 35.50 8.662 2332.4 -33.2 0.30 265.3 2 0.75 8.195 18.93 1989.9 0.0618 0.0542 238 5.65 438.8

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 4 18.29 35.45 8.674 2330.3 -33.3 0.30 265.3 2 0.75 8.195 18.81 1996.8 0.0602 0.0529 231 5.50 438.2

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 5 17.17 35.46 8.687 2331.8 -24.2 0.30 268.0 2 0.75 8.193 18.63 2010.2 0.0579 0.0512 223 5.30 438.3

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 6 15.87 35.39 8.703 2329.4 -30.0 0.30 266.3 2 0.75 8.196 18.48 2018.9 0.0559 0.0497 216 5.12 437.4

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 7 14.94 35.45 8.714 2333.9 -39.4 0.30 263.5 2 0.75 8.201 18.41 2028.3 0.0550 0.0490 212 5.03 438.2

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 8 14.35 35.32 8.722 2327.6 -37.6 0.30 264.0 2 0.75 8.200 18.31 2029.5 0.0537 0.0480 207 4.92 436.6

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 9 14.36 35.35 8.722 2329.2 -34.7 0.30 264.9 2 0.75 8.199 18.30 2031.2 0.0537 0.0479 207 4.91 436.9

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 10 14.75 35.34 8.717 2328.1 -31.4 0.30 265.9 2 0.75 8.197 18.34 2027.7 0.0541 0.0483 209 4.95 436.8

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 11 15.83 35.35 8.704 2327.3 -42.1 0.30 262.7 2 0.75 8.201 18.52 2014.9 0.0564 0.0501 217 5.15 436.9

ODP1172C NIWA 149.93 -43.96 152.5 -40 0.045 12 17.27 35.34 8.687 2325.2 -46.9 0.30 261.2 2 0.75 8.201 18.73 1999.2 0.0590 0.0520 226 5.37 436.8

14C age = 2.622ka, CO2 = 275.3 ppm Interpolatedr average 13.72 35.02 8.732 2312.8 -25.2 267.7 8.194 18.14 2027.0 0.0518 0.0464 199 4.73 432.8

Interpolatedr intraannual variation 2.86 0.17 0.017 7.4 26.7 8.0 0.004 0.47 13.3 0.0025 0.0020 9 0.22 1.4

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 1 9.42 35.17 8.785 2322.0 -17.7 0.50 266.2 0.96 0.34 8.198 17.62 2064.3 0.0477 0.0433 178 4.22 434.7

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 2 9.06 35.27 8.789 2327.7 -16.4 0.50 266.8 0.96 0.34 8.198 17.58 2072.0 0.0472 0.0429 176 4.19 435.9

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 3 8.98 35.26 8.790 2327.1 -12.8 0.50 268.6 0.96 0.34 8.195 17.54 2073.6 0.0468 0.0426 175 4.15 435.8

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 4 9.21 35.21 8.788 2324.3 -3.6 0.50 273.2 0.96 0.34 8.189 17.50 2072.8 0.0464 0.0422 174 4.13 435.2

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 5 10.02 35.17 8.777 2321.8 -24.8 0.50 262.6 0.96 0.34 8.203 17.75 2056.4 0.0491 0.0445 183 4.34 434.7

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 6 11.44 35.22 8.759 2324.0 -44.9 0.50 252.6 0.96 0.34 8.217 18.09 2037.9 0.0530 0.0476 196 4.66 435.3

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 7 12.85 35.22 8.741 2323.3 -42.0 0.50 254.0 0.96 0.34 8.214 18.26 2026.1 0.0550 0.0492 204 4.85 435.3

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 8 13.58 35.21 8.732 2322.3 -47.3 0.50 251.3 0.96 0.34 8.217 18.39 2016.7 0.0567 0.0505 210 4.98 435.2
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MC439 Tübingen -20.03 59.46 -22.5 56 0.055 9 13.02 35.14 8.740 2318.8 -38.9 0.50 255.6 0.96 0.34 8.211 18.24 2022.6 0.0549 0.0491 203 4.83 434.3

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 10 11.86 35.22 8.754 2323.8 -27.4 0.50 261.3 0.96 0.34 8.205 18.02 2041.0 0.0522 0.0470 195 4.62 435.3

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 11 10.75 35.22 8.768 2324.3 -23.9 0.50 263.1 0.96 0.34 8.202 17.84 2052.3 0.0502 0.0454 187 4.45 435.3

MC439 Tübingen -20.03 59.46 -22.5 56 0.055 12 10.06 35.23 8.777 2325.1 -21.2 0.50 264.4 0.96 0.34 8.201 17.74 2059.9 0.0490 0.0444 183 4.34 435.4

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 1 8.38 35.11 8.799 2319.0 17.4 0.50 283.7 0.96 0.34 8.174 17.25 2082.8 0.0437 0.0400 164 3.89 434.0

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 2 8.11 35.23 8.802 2325.7 8.2 0.50 279.1 0.96 0.34 8.181 17.29 2087.0 0.0441 0.0403 165 3.93 435.4

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 3 8.01 35.23 8.803 2325.7 -2.6 0.50 273.7 0.96 0.34 8.188 17.34 2084.2 0.0447 0.0408 167 3.97 435.4

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 4 8.08 35.18 8.802 2322.9 -11.1 0.50 269.5 0.96 0.34 8.193 17.40 2078.6 0.0453 0.0413 169 4.01 434.8

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 5 8.78 35.18 8.793 2322.8 -25.9 0.50 262.1 0.96 0.34 8.204 17.60 2067.3 0.0474 0.0430 176 4.18 434.8

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 6 10.21 35.16 8.775 2321.2 -59.5 0.50 245.2 0.96 0.34 8.227 18.03 2040.8 0.0522 0.0470 192 4.57 434.6

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 7 11.52 35.14 8.759 2319.6 -54.5 0.50 247.8 0.96 0.34 8.223 18.17 2030.1 0.0538 0.0483 198 4.72 434.3

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 8 12.17 35.19 8.750 2322.0 -38.0 0.50 256.0 0.96 0.34 8.212 18.13 2032.8 0.0535 0.0480 199 4.72 434.9

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 9 11.43 35.13 8.760 2319.1 -26.6 0.50 261.7 0.96 0.34 8.204 17.94 2041.6 0.0513 0.0462 191 4.54 434.2

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 10 10.29 35.19 8.774 2322.8 -9.4 0.50 270.3 0.96 0.34 8.192 17.68 2060.5 0.0484 0.0438 181 4.30 434.9

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 11 9.33 35.19 8.786 2323.2 -2.1 0.50 274.0 0.96 0.34 8.188 17.50 2071.5 0.0464 0.0423 174 4.13 434.9

MC439 Tübingen -20.03 59.46 -22.5 60 0.156 12 8.84 35.19 8.792 2323.3 7.1 0.50 278.6 0.96 0.34 8.181 17.38 2078.8 0.0451 0.0412 169 4.02 434.9

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 1 9.92 35.34 8.778 2331.3 -18.6 0.50 265.7 0.96 0.34 8.200 17.71 2066.6 0.0487 0.0442 182 4.33 436.8

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 2 9.64 35.35 8.781 2331.9 -18.7 0.50 265.7 0.96 0.34 8.200 17.68 2069.4 0.0483 0.0438 181 4.29 436.9

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 3 9.56 35.36 8.782 2332.5 -20.8 0.50 264.6 0.96 0.34 8.201 17.68 2069.8 0.0484 0.0439 181 4.30 437.0

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 4 9.74 35.31 8.780 2329.7 -30.2 0.50 259.9 0.96 0.34 8.208 17.77 2062.6 0.0493 0.0447 184 4.36 436.4

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 5 10.52 35.31 8.770 2329.4 -44.2 0.50 252.9 0.96 0.34 8.217 17.98 2050.2 0.0516 0.0465 192 4.55 436.4

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 6 11.85 35.36 8.753 2331.6 -55.8 0.50 247.1 0.96 0.34 8.225 18.25 2035.3 0.0549 0.0491 203 4.82 437.0

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 7 13.21 35.32 8.736 2328.6 -46.2 0.50 251.9 0.96 0.34 8.217 18.35 2025.0 0.0562 0.0501 208 4.95 436.6

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 8 14.00 35.34 8.727 2329.2 -49.6 0.50 250.2 0.96 0.34 8.220 18.48 2016.8 0.0578 0.0514 214 5.09 436.8

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 9 13.34 35.29 8.735 2326.8 -39.1 0.50 255.4 0.96 0.34 8.212 18.31 2025.4 0.0557 0.0497 207 4.91 436.2

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 10 12.11 35.28 8.750 2327.0 -24.8 0.50 262.6 0.96 0.34 8.203 18.04 2042.1 0.0525 0.0472 196 4.65 436.1

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 11 11.04 35.36 8.763 2332.0 -21.8 0.50 264.1 0.96 0.34 8.202 17.88 2056.2 0.0507 0.0458 190 4.50 437.0

MC439 Tübingen -20.03 59.46 -17.5 56 0.054 12 10.46 35.37 8.771 2332.8 -21.3 0.50 264.4 0.96 0.34 8.202 17.81 2062.0 0.0498 0.0450 186 4.42 437.2

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 1 8.66 35.25 8.794 2326.7 15.4 0.50 282.7 0.96 0.34 8.176 17.31 2085.6 0.0444 0.0406 167 3.97 435.7

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 2 8.44 35.29 8.797 2328.9 5.2 0.50 277.6 0.96 0.34 8.183 17.35 2085.7 0.0448 0.0409 168 4.00 436.2

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 3 8.35 35.31 8.798 2330.1 -3.7 0.50 273.2 0.96 0.34 8.189 17.40 2084.3 0.0453 0.0414 170 4.03 436.4

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 4 8.41 35.25 8.798 2326.7 -9.8 0.50 270.1 0.96 0.34 8.193 17.44 2079.1 0.0458 0.0417 171 4.06 435.7
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MC439 Tübingen -20.03 59.46 -17.5 60 0.149 5 9.05 35.25 8.789 2326.6 -27.3 0.50 261.4 0.96 0.34 8.205 17.65 2067.3 0.0480 0.0436 179 4.24 435.7

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 6 10.45 35.26 8.771 2326.6 -59.8 0.50 245.1 0.96 0.34 8.228 18.08 2042.5 0.0528 0.0475 195 4.62 435.8

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 7 11.84 35.18 8.754 2321.6 -59.5 0.50 245.3 0.96 0.34 8.227 18.25 2026.7 0.0549 0.0491 202 4.80 434.8

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 8 12.57 35.22 8.745 2323.4 -37.5 0.50 256.2 0.96 0.34 8.211 18.18 2030.5 0.0542 0.0485 201 4.78 435.3

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 9 11.74 35.17 8.756 2321.1 -16.2 0.50 266.9 0.96 0.34 8.197 17.91 2044.3 0.0510 0.0460 191 4.53 434.7

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 10 10.52 35.20 8.771 2323.3 -9.0 0.50 270.5 0.96 0.34 8.192 17.71 2059.1 0.0487 0.0441 182 4.33 435.1

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 11 9.56 35.28 8.783 2328.1 -2.8 0.50 273.6 0.96 0.34 8.189 17.55 2072.9 0.0470 0.0427 176 4.18 436.1

MC439 Tübingen -20.03 59.46 -17.5 60 0.149 12 9.07 35.27 8.789 2327.7 5.7 0.50 277.9 0.96 0.34 8.183 17.43 2079.7 0.0456 0.0416 172 4.07 435.9

n/d, Pre-ind. CO2 '275 ppm Interpolatedr average 10.09 35.23 8.776 2324.8 -20.0 265.0 8.200 17.74 2059.4 0.0491 0.0444 183 4.34 435.4

Interpolatedr intraannual variation 3.06 0.08 0.024 4.9 43.6 21.8 0.019 0.66 26.7 0.0047 0.0038 16 0.38 0.6

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 1 9.73 34.30 8.786 2283.8 -18.3 0.23 270.7 3 1.2 8.188 17.51 2036.5 0.0461 0.0419 170 4.07 423.9

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 2 9.93 34.22 8.784 2279.5 -14.1 0.23 271.7 3 1.2 8.186 17.51 2032.4 0.0461 0.0420 170 4.07 423.0

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 3 9.54 34.27 8.788 2282.7 -12.3 0.23 272.1 3 1.2 8.186 17.46 2038.3 0.0456 0.0415 168 4.02 423.6

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 4 8.90 34.28 8.796 2284.7 -17.9 0.23 270.8 3 1.2 8.188 17.40 2044.2 0.0449 0.0409 166 3.96 423.7

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 5 8.37 34.42 8.803 2292.9 -14.3 0.23 271.7 3 1.2 8.187 17.34 2055.3 0.0442 0.0404 164 3.91 425.4

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 6 7.93 34.19 8.810 2282.8 -11.8 0.23 272.3 3 1.2 8.185 17.25 2051.8 0.0432 0.0396 160 3.81 422.6

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 7 7.66 34.34 8.812 2290.7 -7.6 0.23 273.2 3 1.2 8.185 17.22 2060.7 0.0429 0.0393 159 3.80 424.4

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 8 7.53 34.46 8.813 2297.0 -2.5 0.23 274.4 3 1.2 8.184 17.20 2067.2 0.0427 0.0392 159 3.79 425.9

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 9 7.53 34.41 8.814 2294.5 -0.7 0.23 274.8 3 1.2 8.183 17.19 2065.6 0.0426 0.0391 158 3.78 425.3

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 10 7.66 34.41 8.812 2294.2 10.0 0.23 277.3 3 1.2 8.180 17.18 2065.9 0.0425 0.0390 158 3.77 425.3

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 11 8.18 34.48 8.805 2296.3 20.2 0.23 279.7 3 1.2 8.177 17.22 2064.8 0.0430 0.0394 160 3.82 426.2

TAN1106/38 NIWA 165.07 -49.69 162.5 -52 0.084 12 8.90 34.38 8.796 2289.6 6.6 0.23 276.5 3 1.2 8.181 17.34 2051.7 0.0442 0.0404 164 3.92 424.9

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 1 12.13 34.69 8.753 2298.2 -26.4 0.23 268.9 3 1.2 8.191 17.88 2025.2 0.0505 0.0456 188 4.47 428.8

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 2 12.51 34.52 8.749 2289.0 -21.4 0.23 270.0 3 1.2 8.189 17.89 2016.1 0.0506 0.0456 187 4.47 426.7

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 3 12.11 34.40 8.755 2283.8 -13.7 0.23 271.8 3 1.2 8.186 17.81 2017.1 0.0495 0.0448 183 4.38 425.2

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 4 11.38 34.57 8.763 2293.6 -22.4 0.23 269.8 3 1.2 8.190 17.76 2029.0 0.0490 0.0444 182 4.34 427.3

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 5 10.73 34.70 8.771 2301.4 -20.4 0.23 270.3 3 1.2 8.190 17.69 2040.7 0.0482 0.0437 179 4.27 428.9

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 6 10.13 34.52 8.779 2293.7 -19.0 0.23 270.6 3 1.2 8.189 17.59 2040.3 0.0470 0.0427 174 4.16 426.7

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 7 9.70 34.64 8.784 2300.6 -13.9 0.23 271.8 3 1.2 8.188 17.53 2049.9 0.0464 0.0422 173 4.11 428.2

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 8 9.50 34.80 8.786 2309.2 -1.9 0.23 274.6 3 1.2 8.185 17.48 2059.9 0.0460 0.0419 172 4.09 430.1
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TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 9 9.47 34.72 8.787 2305.2 -11.1 0.23 272.4 3 1.2 8.188 17.50 2055.7 0.0461 0.0420 172 4.09 429.1

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 10 9.63 34.71 8.785 2304.3 -7.1 0.23 273.4 3 1.2 8.186 17.51 2054.4 0.0462 0.0421 172 4.10 429.0

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 11 10.31 34.71 8.776 2302.8 11.0 0.23 277.5 3 1.2 8.181 17.54 2050.4 0.0466 0.0424 174 4.14 429.0

TAN1106/38 NIWA 165.07 -49.69 162.5 -48 0.105 12 11.21 34.57 8.765 2293.9 5.4 0.23 276.3 3 1.2 8.181 17.65 2035.3 0.0478 0.0434 178 4.25 427.3

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 1 9.82 34.34 8.784 2285.5 -27.6 0.23 268.6 3 1.2 8.191 17.56 2035.5 0.0466 0.0424 172 4.11 424.4

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 2 10.05 34.32 8.782 2284.0 -14.3 0.23 271.7 3 1.2 8.186 17.54 2034.7 0.0464 0.0422 172 4.10 424.2

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 3 9.72 34.34 8.786 2285.7 -13.3 0.23 271.9 3 1.2 8.186 17.50 2038.9 0.0460 0.0418 170 4.06 424.4

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 4 9.11 34.40 8.793 2290.1 -8.2 0.23 273.1 3 1.2 8.185 17.41 2048.0 0.0450 0.0411 167 3.98 425.2

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 5 8.57 34.42 8.800 2292.4 -12.2 0.23 272.2 3 1.2 8.187 17.36 2053.6 0.0444 0.0406 165 3.93 425.4

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 6 8.15 34.28 8.806 2286.6 -11.6 0.23 272.3 3 1.2 8.186 17.29 2052.9 0.0436 0.0399 161 3.85 423.7

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 7 7.88 34.35 8.809 2290.7 -8.7 0.23 273.0 3 1.2 8.185 17.25 2058.6 0.0432 0.0396 160 3.83 424.6

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 8 7.69 34.24 8.812 2285.8 -7.5 0.23 273.3 3 1.2 8.184 17.22 2056.7 0.0428 0.0392 158 3.78 423.2

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 9 7.63 34.31 8.813 2289.4 -6.2 0.23 273.6 3 1.2 8.184 17.21 2060.1 0.0428 0.0392 158 3.78 424.1

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 10 7.84 34.53 8.809 2299.6 4.3 0.23 276.0 3 1.2 8.182 17.23 2067.7 0.0431 0.0395 160 3.82 426.8

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 11 8.37 34.58 8.802 2300.8 -5.9 0.23 273.6 3 1.2 8.186 17.33 2062.5 0.0442 0.0404 164 3.92 427.4

TAN1106/38 NIWA 165.07 -49.69 167.5 -52 0.089 12 9.04 34.39 8.794 2289.7 -31.8 0.23 267.6 3 1.2 8.193 17.48 2044.6 0.0457 0.0416 169 4.03 425.1

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 1 12.07 34.48 8.755 2287.8 -30.8 0.23 267.8 3 1.2 8.192 17.87 2017.5 0.0502 0.0453 186 4.43 426.2

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 2 12.46 34.47 8.750 2286.6 -16.5 0.23 271.2 3 1.2 8.187 17.87 2015.7 0.0503 0.0454 186 4.44 426.0

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 3 12.09 34.32 8.756 2279.9 -15.3 0.23 271.5 3 1.2 8.186 17.80 2014.2 0.0494 0.0447 183 4.36 424.2

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 4 11.37 34.52 8.764 2291.1 -0.8 0.23 274.8 3 1.2 8.183 17.68 2030.9 0.0482 0.0437 179 4.27 426.7

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 5 10.67 34.62 8.772 2297.5 -14.5 0.23 271.6 3 1.2 8.188 17.65 2039.3 0.0478 0.0434 178 4.23 427.9

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 6 10.11 34.53 8.780 2294.2 -18.1 0.23 270.8 3 1.2 8.189 17.58 2041.0 0.0470 0.0427 174 4.15 426.8

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 7 9.73 34.69 8.784 2303.1 -15.6 0.23 271.4 3 1.2 8.189 17.54 2051.2 0.0466 0.0424 173 4.13 428.8

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 8 9.56 34.59 8.786 2298.5 -7.5 0.23 273.3 3 1.2 8.186 17.49 2050.5 0.0459 0.0418 171 4.07 427.5

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 9 9.52 34.60 8.787 2299.0 -2.4 0.23 274.4 3 1.2 8.184 17.47 2052.1 0.0457 0.0417 170 4.06 427.7

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 10 9.71 34.71 8.784 2304.2 0.1 0.23 275.0 3 1.2 8.184 17.49 2054.7 0.0461 0.0420 172 4.09 429.0

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 11 10.32 34.68 8.776 2301.3 -7.0 0.23 273.4 3 1.2 8.186 17.59 2046.3 0.0471 0.0428 176 4.18 428.6

TAN1106/38 NIWA 165.07 -49.69 167.5 -48 0.114 12 11.20 34.38 8.767 2284.5 -21.0 0.23 270.1 3 1.2 8.188 17.71 2024.2 0.0484 0.0439 179 4.27 424.9

n/d, Pre-ind. CO2 '275 ppm Interpolatedr average 9.78 34.49 8.784 2293.1 -10.6 272.5 8.186 17.51 2044.1 0.0462 0.0421 172 4.09 426.3

Interpolatedr intraannual variation 2.00 0.22 0.014 13.6 21.2 4.9 0.003 0.28 16.2 0.0018 0.0015 6 0.15 1.6
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J50 NIWA 170.65 -36.67 167.5 -40 0.048 1 17.77 35.29 8.681 2322.0 -31.0 0.23 271.7 1.6 0.13 8.187 18.63 1995.2 0.0602 0.0531 225 5.36 436.2

J50 NIWA 170.65 -36.67 167.5 -40 0.048 2 18.58 35.36 8.671 2325.1 -22.5 0.23 273.7 1.6 0.13 8.184 18.71 1991.6 0.0613 0.0540 230 5.47 437.0

J50 NIWA 170.65 -36.67 167.5 -40 0.048 3 18.05 35.19 8.678 2316.4 -21.7 0.23 273.9 1.6 0.13 8.183 18.62 1990.5 0.0600 0.0530 225 5.35 434.9

J50 NIWA 170.65 -36.67 167.5 -40 0.048 4 17.05 35.23 8.690 2319.4 -26.3 0.23 272.8 1.6 0.13 8.186 18.52 2000.8 0.0586 0.0519 220 5.22 435.4

J50 NIWA 170.65 -36.67 167.5 -40 0.048 5 15.87 35.35 8.703 2327.2 -28.7 0.23 272.2 1.6 0.13 8.188 18.39 2016.5 0.0570 0.0507 214 5.09 436.9

J50 NIWA 170.65 -36.67 167.5 -40 0.048 6 14.70 35.45 8.717 2334.2 -32.6 0.23 271.3 1.6 0.13 8.191 18.27 2031.2 0.0555 0.0495 209 4.95 438.2

J50 NIWA 170.65 -36.67 167.5 -40 0.048 7 13.93 35.33 8.727 2328.8 -39.0 0.23 269.8 1.6 0.13 8.193 18.17 2033.1 0.0542 0.0485 204 4.84 436.7

J50 NIWA 170.65 -36.67 167.5 -40 0.048 8 13.48 35.31 8.733 2328.4 -43.8 0.23 268.7 1.6 0.13 8.194 18.13 2036.0 0.0537 0.0481 202 4.78 436.4

J50 NIWA 170.65 -36.67 167.5 -40 0.048 9 13.49 35.29 8.733 2327.3 -45.5 0.23 268.3 1.6 0.13 8.195 18.13 2034.8 0.0537 0.0481 202 4.78 436.2

J50 NIWA 170.65 -36.67 167.5 -40 0.048 10 13.86 35.44 8.728 2334.9 -43.1 0.23 268.9 1.6 0.13 8.195 18.19 2037.4 0.0545 0.0487 205 4.86 438.0

J50 NIWA 170.65 -36.67 167.5 -40 0.048 11 14.84 35.22 8.717 2321.5 -45.8 0.23 268.3 1.6 0.13 8.194 18.30 2018.6 0.0558 0.0497 209 4.96 435.3

J50 NIWA 170.65 -36.67 167.5 -40 0.048 12 16.28 35.29 8.699 2323.5 -41.9 0.23 269.2 1.6 0.13 8.192 18.48 2007.7 0.0581 0.0515 218 5.17 436.2

J50 NIWA 170.65 -36.67 167.5 -36 0.096 1 19.85 35.60 8.654 2337.6 -29.3 0.23 272.1 1.6 0.13 8.186 18.93 1987.2 0.0643 0.0562 241 5.74 440.0

J50 NIWA 170.65 -36.67 167.5 -36 0.096 2 20.64 35.57 8.645 2335.6 -19.7 0.23 274.3 1.6 0.13 8.182 18.99 1980.3 0.0652 0.0569 245 5.83 439.6

J50 NIWA 170.65 -36.67 167.5 -36 0.096 3 20.24 35.60 8.650 2337.4 -22.7 0.23 273.6 1.6 0.13 8.183 18.96 1984.7 0.0647 0.0565 243 5.78 440.0

J50 NIWA 170.65 -36.67 167.5 -36 0.096 4 19.31 35.63 8.660 2339.6 -28.4 0.23 272.3 1.6 0.13 8.186 18.86 1993.7 0.0634 0.0555 238 5.66 440.4

J50 NIWA 170.65 -36.67 167.5 -36 0.096 5 18.10 35.68 8.675 2343.2 -35.1 0.23 270.8 1.6 0.13 8.190 18.74 2006.2 0.0616 0.0542 232 5.51 441.0

J50 NIWA 170.65 -36.67 167.5 -36 0.096 6 16.79 35.69 8.691 2345.0 -31.9 0.23 271.5 1.6 0.13 8.190 18.56 2020.1 0.0593 0.0524 224 5.31 441.1

J50 NIWA 170.65 -36.67 167.5 -36 0.096 7 15.90 35.66 8.701 2344.3 -33.5 0.23 271.1 1.6 0.13 8.191 18.45 2027.4 0.0578 0.0513 218 5.18 440.8

J50 NIWA 170.65 -36.67 167.5 -36 0.096 8 15.41 35.53 8.708 2337.7 -35.9 0.23 270.6 1.6 0.13 8.192 18.38 2026.7 0.0569 0.0506 214 5.08 439.2

J50 NIWA 170.65 -36.67 167.5 -36 0.096 9 15.41 35.48 8.708 2334.9 -40.7 0.23 269.4 1.6 0.13 8.193 18.39 2023.9 0.0570 0.0507 214 5.08 438.5

J50 NIWA 170.65 -36.67 167.5 -36 0.096 10 15.87 35.58 8.702 2339.9 -38.4 0.23 270.0 1.6 0.13 8.192 18.45 2023.6 0.0578 0.0513 218 5.17 439.8

J50 NIWA 170.65 -36.67 167.5 -36 0.096 11 16.97 35.47 8.689 2332.6 -33.0 0.23 271.2 1.6 0.13 8.189 18.56 2009.5 0.0592 0.0524 223 5.29 438.4

J50 NIWA 170.65 -36.67 167.5 -36 0.096 12 18.42 35.60 8.671 2338.5 -43.8 0.23 268.7 1.6 0.13 8.192 18.80 1998.3 0.0624 0.0548 234 5.56 440.0

J50 NIWA 170.65 -36.67 172.5 -40 0.069 1 18.05 35.10 8.678 2311.6 -29.4 0.23 272.1 1.6 0.13 8.185 18.64 1985.7 0.0602 0.0531 225 5.35 433.8

J50 NIWA 170.65 -36.67 172.5 -40 0.069 2 18.96 35.25 8.667 2318.9 -24.7 0.23 273.2 1.6 0.13 8.184 18.76 1983.4 0.0618 0.0543 231 5.51 435.7

J50 NIWA 170.65 -36.67 172.5 -40 0.069 3 18.46 35.11 8.673 2311.8 -20.2 0.23 274.2 1.6 0.13 8.182 18.66 1983.8 0.0605 0.0533 226 5.39 434.0

J50 NIWA 170.65 -36.67 172.5 -40 0.069 4 17.34 35.28 8.686 2321.8 -21.0 0.23 274.0 1.6 0.13 8.184 18.54 2000.8 0.0590 0.0522 221 5.26 436.1

J50 NIWA 170.65 -36.67 172.5 -40 0.069 5 16.10 35.29 8.701 2323.7 -19.7 0.23 274.3 1.6 0.13 8.185 18.38 2013.5 0.0569 0.0506 214 5.08 436.2

J50 NIWA 170.65 -36.67 172.5 -40 0.069 6 14.87 35.33 8.716 2327.4 -31.1 0.23 271.7 1.6 0.13 8.190 18.27 2025.1 0.0555 0.0495 208 4.95 436.7

J50 NIWA 170.65 -36.67 172.5 -40 0.069 7 14.04 35.36 8.726 2330.2 -22.8 0.23 273.6 1.6 0.13 8.188 18.14 2036.1 0.0539 0.0482 203 4.82 437.0

J50 NIWA 170.65 -36.67 172.5 -40 0.069 8 13.56 35.24 8.733 2324.5 -41.4 0.23 269.3 1.6 0.13 8.193 18.12 2032.9 0.0536 0.0480 201 4.77 435.6
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J50 NIWA 170.65 -36.67 172.5 -40 0.069 9 13.56 35.33 8.732 2329.4 -49.4 0.23 267.4 1.6 0.13 8.196 18.16 2035.0 0.0541 0.0484 203 4.81 436.7

J50 NIWA 170.65 -36.67 172.5 -40 0.069 10 14.02 35.31 8.726 2327.5 -77.5 0.23 260.9 1.6 0.13 8.205 18.31 2024.4 0.0559 0.0498 209 4.95 436.4

J50 NIWA 170.65 -36.67 172.5 -40 0.069 11 15.13 35.17 8.714 2318.4 -26.6 0.23 272.7 1.6 0.13 8.187 18.27 2017.2 0.0554 0.0494 208 4.94 434.7

J50 NIWA 170.65 -36.67 172.5 -40 0.069 12 16.58 35.22 8.696 2319.4 -35.4 0.23 270.7 1.6 0.13 8.189 18.49 2003.3 0.0582 0.0516 218 5.18 435.3

J50 NIWA 170.65 -36.67 172.5 -36 0.259 1 19.92 35.56 8.654 2335.3 -13.5 0.23 275.8 1.6 0.13 8.181 18.88 1988.0 0.0636 0.0557 239 5.69 439.5

J50 NIWA 170.65 -36.67 172.5 -36 0.259 2 20.72 35.53 8.644 2333.3 -11.7 0.23 276.2 1.6 0.13 8.179 18.97 1979.6 0.0649 0.0566 244 5.81 439.2

J50 NIWA 170.65 -36.67 172.5 -36 0.259 3 20.28 35.52 8.650 2332.9 -19.5 0.23 274.4 1.6 0.13 8.182 18.94 1981.9 0.0645 0.0563 242 5.76 439.0

J50 NIWA 170.65 -36.67 172.5 -36 0.259 4 19.19 35.63 8.662 2339.6 -27.4 0.23 272.5 1.6 0.13 8.186 18.84 1995.1 0.0631 0.0553 237 5.64 440.4

J50 NIWA 170.65 -36.67 172.5 -36 0.259 5 17.92 35.57 8.677 2337.2 -34.7 0.23 270.9 1.6 0.13 8.189 18.70 2003.7 0.0611 0.0538 230 5.45 439.6

J50 NIWA 170.65 -36.67 172.5 -36 0.259 6 16.59 35.62 8.693 2341.3 -33.0 0.23 271.2 1.6 0.13 8.190 18.53 2019.1 0.0589 0.0521 222 5.27 440.3

J50 NIWA 170.65 -36.67 172.5 -36 0.259 7 15.68 35.63 8.704 2342.9 -32.7 0.23 271.3 1.6 0.13 8.191 18.41 2028.6 0.0574 0.0510 217 5.13 440.4

J50 NIWA 170.65 -36.67 172.5 -36 0.259 8 15.17 35.49 8.711 2335.8 -35.2 0.23 270.7 1.6 0.13 8.192 18.34 2027.7 0.0564 0.0502 212 5.04 438.7

J50 NIWA 170.65 -36.67 172.5 -36 0.259 9 15.17 35.54 8.711 2338.5 -54.4 0.23 266.3 1.6 0.13 8.198 18.41 2026.1 0.0572 0.0509 215 5.10 439.3

J50 NIWA 170.65 -36.67 172.5 -36 0.259 10 15.68 35.51 8.705 2336.2 -69.0 0.23 262.9 1.6 0.13 8.202 18.52 2017.1 0.0586 0.0520 220 5.21 438.9

J50 NIWA 170.65 -36.67 172.5 -36 0.259 11 16.89 35.46 8.691 2332.1 -25.4 0.23 273.0 1.6 0.13 8.187 18.52 2011.3 0.0588 0.0520 221 5.25 438.3

J50 NIWA 170.65 -36.67 172.5 -36 0.259 12 18.44 35.54 8.671 2335.1 -36.0 0.23 270.5 1.6 0.13 8.189 18.76 1997.3 0.0620 0.0545 233 5.53 439.3

14C age =1.564ka, CO2 = 278.9 ppm Interpolatedr average 17.20 35.49 8.687 2333.9 -33.0 271.2 8.189 18.59 2008.2 0.0597 0.0527 224 5.33 438.7

Interpolatedr intraannual variation 4.00 0.13 0.037 8.2 27.3 6.3 0.009 0.45 27.5 0.0046 0.0035 17 0.41 1.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 1 12.40 35.52 8.745 2340.3 -25.3 0.04 278.1 0.34 0.04 8.184 17.88 2061.2 0.0509 0.0459 193 4.57 439.0

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 2 12.12 35.54 8.749 2341.6 -22.0 0.04 278.2 0.34 0.04 8.184 17.85 2064.6 0.0505 0.0455 191 4.54 439.3

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 3 12.14 35.53 8.749 2341.0 -25.2 0.04 278.1 0.34 0.04 8.184 17.85 2064.0 0.0505 0.0456 192 4.54 439.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 4 12.48 35.53 8.744 2340.8 -30.4 0.04 277.9 0.34 0.04 8.184 17.90 2060.7 0.0511 0.0460 194 4.59 439.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 5 13.36 35.53 8.733 2340.3 -27.6 0.04 278.0 0.34 0.04 8.184 18.01 2052.7 0.0524 0.0471 199 4.71 439.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 6 14.67 35.55 8.717 2340.6 -45.2 0.04 277.3 0.34 0.04 8.184 18.19 2040.8 0.0546 0.0488 207 4.91 439.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 7 16.56 35.53 8.694 2337.9 -32.0 0.04 277.8 0.34 0.04 8.182 18.42 2022.4 0.0575 0.0510 218 5.17 439.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 8 17.53 35.47 8.683 2333.6 -14.9 0.04 278.5 0.34 0.04 8.180 18.53 2011.1 0.0589 0.0521 223 5.29 438.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 9 16.99 35.48 8.689 2334.7 -13.2 0.04 278.6 0.34 0.04 8.180 18.46 2016.8 0.0580 0.0514 220 5.21 438.5

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 10 15.44 35.48 8.708 2336.0 -17.1 0.04 278.4 0.34 0.04 8.182 18.26 2031.5 0.0555 0.0495 210 4.99 438.5

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 11 13.96 35.46 8.726 2336.0 -14.6 0.04 278.5 0.34 0.04 8.182 18.07 2044.7 0.0531 0.0476 201 4.77 438.3

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 40 0.071 12 13.15 35.47 8.736 2337.0 -30.2 0.04 277.9 0.34 0.04 8.183 17.98 2052.1 0.0520 0.0467 197 4.67 438.4
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IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 1 9.57 35.17 8.783 2322.0 -21.4 0.04 278.2 0.34 0.04 8.182 17.48 2071.9 0.0462 0.0420 173 4.12 434.7

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 2 9.22 35.26 8.787 2327.1 -20.5 0.04 278.3 0.34 0.04 8.182 17.44 2078.6 0.0458 0.0417 172 4.09 435.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 3 9.34 35.26 8.786 2327.0 -21.8 0.04 278.2 0.34 0.04 8.182 17.46 2077.5 0.0460 0.0419 173 4.10 435.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 4 9.77 35.20 8.780 2323.6 -29.3 0.04 277.9 0.34 0.04 8.182 17.51 2071.1 0.0465 0.0423 175 4.15 435.1

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 5 10.76 35.17 8.768 2321.6 -41.4 0.04 277.4 0.34 0.04 8.183 17.64 2061.0 0.0480 0.0435 180 4.28 434.7

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 6 12.17 35.18 8.750 2321.4 -53.5 0.04 277.0 0.34 0.04 8.183 17.83 2048.5 0.0502 0.0453 189 4.48 434.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 7 13.73 35.19 8.731 2321.1 -45.5 0.04 277.3 0.34 0.04 8.182 18.03 2035.0 0.0525 0.0471 198 4.69 434.9

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 8 14.50 35.08 8.722 2314.5 -27.7 0.04 278.0 0.34 0.04 8.180 18.10 2024.1 0.0534 0.0478 201 4.77 433.6

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 9 14.05 35.05 8.727 2313.2 -15.3 0.04 278.5 0.34 0.04 8.180 18.03 2027.4 0.0526 0.0472 197 4.70 433.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 10 12.56 35.14 8.745 2319.0 -17.0 0.04 278.4 0.34 0.04 8.181 17.85 2044.5 0.0505 0.0455 190 4.51 434.3

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 11 11.21 35.10 8.763 2317.5 -24.0 0.04 278.1 0.34 0.04 8.181 17.68 2054.7 0.0484 0.0439 182 4.32 433.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -27.5 52 0.066 12 10.32 35.11 8.774 2318.5 -24.2 0.04 278.1 0.34 0.04 8.182 17.57 2062.9 0.0472 0.0428 177 4.20 434.0

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 1 12.50 35.54 8.744 2341.4 -26.7 0.04 278.0 0.34 0.04 8.184 17.90 2061.1 0.0511 0.0460 194 4.59 439.3

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 2 12.20 35.55 8.748 2342.1 -16.1 0.04 278.5 0.34 0.04 8.184 17.86 2064.5 0.0506 0.0456 192 4.55 439.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 3 12.17 35.58 8.748 2343.9 -15.7 0.04 278.5 0.34 0.04 8.184 17.86 2066.0 0.0506 0.0456 192 4.55 439.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 4 12.46 35.55 8.745 2342.0 -23.6 0.04 278.2 0.34 0.04 8.184 17.89 2061.9 0.0510 0.0460 194 4.59 439.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 5 13.35 35.58 8.733 2343.2 -47.9 0.04 277.2 0.34 0.04 8.185 18.03 2054.3 0.0526 0.0472 200 4.73 439.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 6 14.89 35.57 8.714 2341.5 -84.5 0.04 275.7 0.34 0.04 8.186 18.24 2038.4 0.0552 0.0493 209 4.96 439.6

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 7 16.77 35.58 8.691 2340.6 -26.2 0.04 278.1 0.34 0.04 8.182 18.45 2022.5 0.0579 0.0514 220 5.21 439.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 8 17.75 35.58 8.679 2339.6 -32.7 0.04 277.8 0.34 0.04 8.181 18.58 2012.8 0.0596 0.0526 226 5.36 439.8

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 9 17.18 35.55 8.687 2338.5 -24.9 0.04 278.1 0.34 0.04 8.181 18.50 2017.4 0.0585 0.0518 222 5.26 439.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 10 15.62 35.59 8.705 2342.1 -30.3 0.04 277.9 0.34 0.04 8.183 18.31 2033.9 0.0561 0.0499 213 5.05 439.9

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 11 14.08 35.51 8.725 2338.7 -22.2 0.04 278.2 0.34 0.04 8.183 18.10 2045.4 0.0535 0.0479 203 4.80 438.9

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 48 0.153 12 13.19 35.52 8.736 2339.8 -32.2 0.04 277.8 0.34 0.04 8.184 17.99 2053.7 0.0522 0.0469 198 4.69 439.0

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 1 10.59 35.31 8.769 2329.4 -20.3 0.04 278.3 0.34 0.04 8.183 17.62 2068.8 0.0478 0.0434 180 4.28 436.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 2 10.25 35.36 8.773 2332.3 -19.3 0.04 278.3 0.34 0.04 8.183 17.59 2073.9 0.0474 0.0431 179 4.24 437.0

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 3 10.23 35.39 8.774 2334.0 -15.0 0.04 278.5 0.34 0.04 8.183 17.58 2075.4 0.0474 0.0430 179 4.25 437.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 4 10.60 35.31 8.769 2329.4 -3.9 0.04 278.9 0.34 0.04 8.182 17.62 2069.2 0.0478 0.0433 180 4.27 436.4

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 5 11.52 35.29 8.758 2327.8 -44.7 0.04 277.3 0.34 0.04 8.184 17.75 2059.1 0.0493 0.0446 186 4.41 436.2

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 6 12.93 35.36 8.740 2331.0 -50.6 0.04 277.1 0.34 0.04 8.184 17.95 2049.0 0.0516 0.0464 195 4.62 437.0

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 7 14.49 35.38 8.720 2331.1 -47.0 0.04 277.2 0.34 0.04 8.183 18.15 2035.5 0.0540 0.0483 204 4.84 437.3

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 8 15.25 35.32 8.711 2327.2 -44.8 0.04 277.3 0.34 0.04 8.182 18.24 2026.1 0.0551 0.0492 208 4.94 436.6
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IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 9 14.78 35.24 8.717 2323.1 -31.1 0.04 277.9 0.34 0.04 8.181 18.16 2027.7 0.0541 0.0484 204 4.85 435.6

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 10 13.38 35.32 8.734 2328.5 -23.3 0.04 278.2 0.34 0.04 8.182 17.98 2044.1 0.0521 0.0468 197 4.66 436.6

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 11 12.09 35.27 8.751 2326.4 -24.5 0.04 278.1 0.34 0.04 8.182 17.81 2053.7 0.0500 0.0452 189 4.48 435.9

IODP 1308 IODP (T. Chalk) -24.24 49.88 -22.5 52 0.133 12 11.29 35.30 8.761 2328.5 -23.0 0.04 278.2 0.34 0.04 8.183 17.71 2062.1 0.0489 0.0442 184 4.37 436.3

Age = 0.390ka, CO2 = 279.1 ppm Interpolatedr average 13.22 35.41 8.736 2333.6 -29.3 277.9 8.183 17.98 2048.8 0.0521 0.0468 197 4.67 437.7

Interpolatedr intraannual variation 3.90 0.08 0.029 5.3 29.5 1.2 0.001 0.50 37.1 0.0061 0.0048 23 0.55 1.0

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 1 16.83 36.16 8.688 2374.6 -26.2 0.04 278.1 0.66 0.02 8.185 18.53 2046.1 0.0591 0.0523 227 5.36 446.9

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 2 16.33 36.10 8.694 2371.4 -15.0 0.04 278.5 0.66 0.02 8.185 18.46 2048.8 0.0581 0.0515 223 5.27 446.2

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 3 16.21 36.14 8.695 2373.9 -30.3 0.04 277.9 0.66 0.02 8.186 18.45 2051.2 0.0581 0.0515 223 5.26 446.7

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 4 16.56 36.13 8.691 2373.0 -26.3 0.04 278.0 0.66 0.02 8.185 18.50 2047.4 0.0586 0.0519 225 5.31 446.6

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 5 17.60 36.24 8.678 2378.7 -33.7 0.04 277.8 0.66 0.02 8.185 18.65 2041.6 0.0606 0.0534 233 5.50 447.9

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 6 19.44 36.19 8.656 2373.7 -23.5 0.04 278.2 0.66 0.02 8.182 18.87 2021.2 0.0636 0.0557 243 5.76 447.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 7 22.30 36.22 8.622 2372.0 -7.7 0.04 278.8 0.66 0.02 8.178 19.22 1993.3 0.0687 0.0594 261 6.20 447.7

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 8 23.94 36.14 8.603 2364.9 4.9 0.04 279.3 0.66 0.02 8.174 19.41 1973.1 0.0715 0.0614 270 6.43 446.7

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 9 23.20 36.13 8.612 2365.4 2.0 0.04 279.2 0.66 0.02 8.175 19.32 1980.5 0.0701 0.0604 266 6.31 446.6

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 10 21.34 36.03 8.634 2361.9 -19.4 0.04 278.3 0.66 0.02 8.179 19.08 1995.2 0.0667 0.0579 253 6.00 445.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 11 19.34 36.09 8.658 2367.8 -22.5 0.04 278.2 0.66 0.02 8.182 18.84 2018.1 0.0632 0.0554 241 5.72 446.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 40 0.046 12 17.83 36.10 8.676 2370.0 -33.2 0.04 277.8 0.66 0.02 8.184 18.66 2033.3 0.0607 0.0535 232 5.50 446.2

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 1 14.92 35.84 8.713 2357.1 -13.4 0.04 278.6 0.66 0.02 8.184 18.24 2051.4 0.0553 0.0493 211 5.00 443.0

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 2 14.48 35.87 8.718 2359.2 -21.3 0.04 278.2 0.66 0.02 8.185 18.19 2056.6 0.0547 0.0489 209 4.94 443.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 3 14.38 35.87 8.719 2359.3 -36.5 0.04 277.6 0.66 0.02 8.186 18.19 2057.1 0.0546 0.0488 209 4.94 443.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 4 14.68 35.85 8.715 2357.9 -24.1 0.04 278.1 0.66 0.02 8.185 18.22 2053.8 0.0550 0.0491 210 4.97 443.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 5 15.55 35.95 8.704 2363.1 -30.2 0.04 277.9 0.66 0.02 8.185 18.35 2049.5 0.0566 0.0504 217 5.12 444.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 6 16.90 35.93 8.688 2360.8 -45.4 0.04 277.3 0.66 0.02 8.185 18.52 2035.1 0.0589 0.0521 225 5.32 444.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 7 19.45 35.79 8.658 2350.0 -22.1 0.04 278.2 0.66 0.02 8.180 18.81 2004.7 0.0628 0.0551 238 5.66 442.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 8 20.99 35.69 8.640 2342.4 5.9 0.04 279.3 0.66 0.02 8.176 18.98 1985.9 0.0651 0.0568 246 5.85 441.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 9 20.51 35.61 8.646 2338.3 -16.1 0.04 278.5 0.66 0.02 8.177 18.92 1987.0 0.0643 0.0562 243 5.77 440.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 10 18.72 35.61 8.668 2340.4 -34.0 0.04 277.7 0.66 0.02 8.180 18.71 2004.4 0.0613 0.0539 232 5.51 440.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 11 17.02 35.71 8.688 2347.8 -24.8 0.04 278.1 0.66 0.02 8.182 18.50 2025.4 0.0586 0.0519 223 5.28 441.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -37.5 44 0.034 12 15.82 35.79 8.702 2353.5 -34.6 0.04 277.7 0.66 0.02 8.184 18.36 2040.1 0.0568 0.0505 216 5.12 442.4
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IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 1 16.36 36.03 8.694 2367.2 -34.4 0.04 277.7 0.66 0.02 8.185 18.46 2044.9 0.0581 0.0515 223 5.26 445.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 2 15.90 36.00 8.700 2365.8 -18.6 0.04 278.4 0.66 0.02 8.185 18.39 2048.6 0.0572 0.0508 219 5.18 445.0

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 3 15.81 36.07 8.700 2370.0 -21.4 0.04 278.2 0.66 0.02 8.185 18.39 2052.4 0.0572 0.0508 219 5.18 445.8

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 4 16.19 36.01 8.696 2366.1 -28.9 0.04 277.9 0.66 0.02 8.185 18.43 2045.9 0.0578 0.0512 221 5.23 445.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 5 17.23 36.09 8.683 2370.0 -33.8 0.04 277.7 0.66 0.02 8.185 18.58 2038.9 0.0597 0.0527 229 5.40 446.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 6 19.08 36.13 8.661 2370.5 -24.8 0.04 278.1 0.66 0.02 8.183 18.82 2022.3 0.0629 0.0551 240 5.69 446.6

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 7 21.81 36.12 8.628 2366.7 -3.5 0.04 279.0 0.66 0.02 8.178 19.14 1994.5 0.0676 0.0586 257 6.09 446.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 8 23.29 36.14 8.611 2365.8 15.1 0.04 279.7 0.66 0.02 8.175 19.32 1980.4 0.0702 0.0605 266 6.32 446.7

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 9 22.64 36.14 8.618 2366.7 7.8 0.04 279.4 0.66 0.02 8.176 19.24 1987.0 0.0691 0.0597 262 6.22 446.7

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 10 20.72 36.03 8.642 2362.6 -14.6 0.04 278.5 0.66 0.02 8.179 19.00 2001.7 0.0655 0.0571 249 5.91 445.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 11 18.76 36.03 8.665 2364.9 -19.2 0.04 278.3 0.66 0.02 8.182 18.76 2021.5 0.0621 0.0545 237 5.61 445.3

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 40 0.826 12 17.32 36.00 8.682 2364.5 -66.6 0.04 276.4 0.66 0.02 8.186 18.60 2033.2 0.0599 0.0529 229 5.41 445.0

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 1 14.58 35.83 8.717 2356.8 -21.8 0.04 278.2 0.66 0.02 8.185 18.20 2054.0 0.0548 0.0489 209 4.95 442.9

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 2 14.26 35.79 8.721 2354.7 -28.3 0.04 278.0 0.66 0.02 8.185 18.16 2055.1 0.0543 0.0485 207 4.90 442.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 3 14.27 35.86 8.720 2358.8 -28.3 0.04 278.0 0.66 0.02 8.185 18.17 2058.0 0.0544 0.0486 208 4.91 443.2

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 4 14.62 35.81 8.716 2355.6 -27.4 0.04 278.0 0.66 0.02 8.185 18.21 2052.6 0.0549 0.0490 209 4.95 442.6

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 5 15.51 35.87 8.705 2358.4 -36.3 0.04 277.6 0.66 0.02 8.185 18.33 2046.3 0.0565 0.0502 216 5.10 443.4

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 6 16.96 35.93 8.687 2360.7 -43.4 0.04 277.4 0.66 0.02 8.184 18.53 2034.5 0.0590 0.0522 225 5.33 444.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 7 19.43 35.84 8.658 2352.9 -26.8 0.04 278.0 0.66 0.02 8.180 18.82 2006.7 0.0629 0.0552 239 5.67 443.0

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 8 20.69 35.81 8.643 2349.7 -11.6 0.04 278.6 0.66 0.02 8.178 18.97 1993.2 0.0650 0.0567 246 5.84 442.6

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 9 20.17 35.77 8.649 2348.0 -6.3 0.04 278.8 0.66 0.02 8.178 18.89 1997.1 0.0639 0.0559 242 5.75 442.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 10 18.33 35.67 8.672 2344.2 -27.3 0.04 278.0 0.66 0.02 8.181 18.66 2010.8 0.0607 0.0535 230 5.46 440.9

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 11 16.61 35.77 8.692 2351.7 -32.5 0.04 277.8 0.66 0.02 8.183 18.46 2031.6 0.0581 0.0515 221 5.23 442.1

IODP 1313 IODP (T. Chalk) -32.96 41.00 -32.5 44 0.109 12 15.45 35.78 8.706 2353.2 -23.5 0.04 278.2 0.66 0.02 8.184 18.31 2043.5 0.0561 0.0500 214 5.06 442.2

Age = 1.097ka, CO2 = 279.1 ppm Interpolatedr average 18.50 36.03 8.668 2365.1 -21.0 278.3 8.182 18.73 2023.7 0.0618 0.0542 236 5.58 445.4

Interpolatedr intraannual variation 5.38 0.12 0.066 5.9 38.8 1.6 0.008 0.67 52.0 0.0094 0.0070 34 0.82 1.5

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 1 11.14 35.42 8.762 2335.3 -19.5 0.55 268.4 0.55 0.23 8.196 17.84 2061.1 0.0503 0.0454 189 4.48 437.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 2 10.84 35.43 8.766 2336.0 -18.5 0.55 269.0 0.55 0.23 8.196 17.80 2064.6 0.0498 0.0450 187 4.44 437.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 3 10.78 35.46 8.766 2337.7 -14.1 0.55 271.3 0.55 0.23 8.193 17.76 2068.2 0.0494 0.0447 186 4.41 438.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 4 11.05 35.40 8.763 2334.2 -8.4 0.55 274.5 0.55 0.23 8.188 17.74 2065.6 0.0492 0.0445 186 4.40 437.5
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ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 5 11.91 35.44 8.752 2336.0 -55.1 0.55 248.8 0.55 0.23 8.223 18.24 2039.5 0.0548 0.0491 203 4.82 438.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 6 13.34 35.47 8.734 2336.9 -65.1 0.55 243.3 0.55 0.23 8.231 18.52 2022.5 0.0583 0.0518 216 5.11 438.4

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 7 14.97 35.46 8.714 2335.2 -45.3 0.55 254.2 0.55 0.23 8.214 18.56 2015.8 0.0589 0.0522 219 5.21 438.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 8 15.79 35.46 8.704 2334.6 -44.6 0.55 254.6 0.55 0.23 8.213 18.66 2008.2 0.0603 0.0532 224 5.32 438.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 9 15.28 35.40 8.710 2331.6 -35.2 0.55 259.7 0.55 0.23 8.206 18.51 2015.0 0.0583 0.0517 218 5.17 437.5

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 10 13.86 35.41 8.728 2333.2 -26.0 0.55 264.8 0.55 0.23 8.200 18.25 2033.0 0.0551 0.0492 207 4.90 437.7

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 11 12.55 35.38 8.744 2332.3 -23.2 0.55 266.4 0.55 0.23 8.198 18.05 2045.1 0.0527 0.0474 198 4.69 437.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 52 0.050 12 11.76 35.46 8.754 2337.2 -22.0 0.55 267.0 0.55 0.23 8.198 17.95 2056.1 0.0515 0.0464 194 4.59 438.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 1 9.92 35.34 8.778 2331.3 -18.6 0.55 268.9 0.55 0.23 8.195 17.67 2069.0 0.0483 0.0438 181 4.29 436.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 2 9.64 35.35 8.781 2331.9 -18.7 0.55 268.8 0.55 0.23 8.196 17.63 2071.8 0.0479 0.0435 179 4.26 436.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 3 9.56 35.36 8.782 2332.5 -20.8 0.55 267.7 0.55 0.23 8.197 17.64 2072.1 0.0479 0.0435 180 4.26 437.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 4 9.74 35.31 8.780 2329.7 -30.2 0.55 262.5 0.55 0.23 8.204 17.73 2064.6 0.0489 0.0443 183 4.33 436.4

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 5 10.52 35.31 8.770 2329.4 -44.2 0.55 254.8 0.55 0.23 8.215 17.95 2051.8 0.0513 0.0463 191 4.53 436.4

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 6 11.85 35.36 8.753 2331.6 -55.8 0.55 248.4 0.55 0.23 8.224 18.23 2036.5 0.0546 0.0489 202 4.80 437.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 7 13.21 35.32 8.736 2328.6 -46.2 0.55 253.7 0.55 0.23 8.215 18.32 2026.6 0.0558 0.0498 207 4.92 436.6

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 8 14.00 35.34 8.727 2329.2 -49.6 0.55 251.8 0.55 0.23 8.217 18.46 2018.3 0.0575 0.0512 213 5.07 436.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 9 13.34 35.29 8.735 2326.8 -39.1 0.55 257.6 0.55 0.23 8.209 18.27 2027.3 0.0553 0.0494 206 4.89 436.2

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 10 12.11 35.28 8.750 2327.0 -24.8 0.55 265.5 0.55 0.23 8.199 17.99 2044.4 0.0520 0.0468 195 4.62 436.1

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 11 11.04 35.36 8.763 2332.0 -21.8 0.55 267.1 0.55 0.23 8.198 17.84 2058.6 0.0502 0.0454 188 4.47 437.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -17.5 56 0.124 12 10.46 35.37 8.771 2332.8 -21.3 0.55 267.4 0.55 0.23 8.198 17.76 2064.4 0.0493 0.0446 185 4.39 437.2

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 1 10.84 35.42 8.766 2335.4 -19.5 0.55 268.4 0.55 0.23 8.196 17.81 2063.8 0.0499 0.0451 187 4.44 437.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 2 10.54 35.43 8.769 2336.1 -20.8 0.55 267.7 0.55 0.23 8.198 17.78 2066.4 0.0495 0.0448 186 4.41 437.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 3 10.48 35.44 8.770 2336.7 -24.4 0.55 265.7 0.55 0.23 8.200 17.80 2065.8 0.0498 0.0450 187 4.43 438.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 4 10.80 35.42 8.766 2335.4 -43.3 0.55 255.3 0.55 0.23 8.214 17.99 2054.1 0.0519 0.0467 193 4.58 437.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 5 11.81 35.43 8.753 2335.5 -74.5 0.55 238.1 0.55 0.23 8.239 18.40 2030.9 0.0566 0.0505 209 4.94 437.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 6 13.40 35.43 8.733 2334.6 -53.3 0.55 249.8 0.55 0.23 8.221 18.42 2025.9 0.0570 0.0508 212 5.02 437.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 7 15.12 35.38 8.713 2330.6 -43.3 0.55 255.3 0.55 0.23 8.212 18.55 2012.1 0.0588 0.0522 219 5.19 437.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 8 15.91 35.37 8.703 2329.4 -31.7 0.55 261.7 0.55 0.23 8.202 18.56 2009.3 0.0590 0.0522 220 5.23 437.2

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 9 15.30 35.34 8.711 2328.2 -28.9 0.55 263.2 0.55 0.23 8.201 18.45 2015.2 0.0576 0.0512 215 5.11 436.8

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 10 13.81 35.36 8.729 2330.4 -26.8 0.55 264.3 0.55 0.23 8.200 18.24 2031.1 0.0550 0.0492 206 4.89 437.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 11 12.38 35.38 8.746 2332.4 -20.0 0.55 268.1 0.55 0.23 8.196 18.00 2048.0 0.0522 0.0469 196 4.65 437.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 52 0.059 12 11.45 35.46 8.758 2337.4 -21.2 0.55 267.4 0.55 0.23 8.198 17.90 2059.3 0.0510 0.0460 192 4.54 438.3
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ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 1 9.93 35.40 8.777 2334.7 -20.2 0.55 268.0 0.55 0.23 8.197 17.69 2070.7 0.0485 0.0440 182 4.32 437.5

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 2 9.69 35.37 8.781 2333.1 -20.5 0.55 267.8 0.55 0.23 8.197 17.66 2071.5 0.0481 0.0437 180 4.28 437.2

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 3 9.63 35.38 8.781 2333.6 -22.3 0.55 266.8 0.55 0.23 8.198 17.66 2071.7 0.0482 0.0437 181 4.29 437.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 4 9.86 35.35 8.779 2331.9 -34.5 0.55 260.1 0.55 0.23 8.207 17.79 2063.5 0.0495 0.0448 185 4.38 436.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 5 10.71 35.35 8.768 2331.5 -61.5 0.55 245.3 0.55 0.23 8.228 18.12 2044.0 0.0533 0.0479 197 4.68 436.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 6 12.06 35.37 8.751 2332.0 -63.3 0.55 244.3 0.55 0.23 8.229 18.32 2031.5 0.0557 0.0498 206 4.89 437.2

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 7 13.50 35.31 8.733 2327.8 -40.3 0.55 256.9 0.55 0.23 8.210 18.31 2026.1 0.0557 0.0497 207 4.92 436.4

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 8 14.28 35.30 8.723 2326.8 -33.6 0.55 260.6 0.55 0.23 8.205 18.35 2021.3 0.0563 0.0502 210 4.99 436.3

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 9 13.60 35.27 8.732 2325.6 -31.1 0.55 262.0 0.55 0.23 8.203 18.24 2027.6 0.0549 0.0491 205 4.87 435.9

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 10 12.32 35.28 8.748 2326.9 -27.6 0.55 263.9 0.55 0.23 8.201 18.04 2041.3 0.0526 0.0473 197 4.67 436.1

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 11 11.16 35.36 8.762 2331.9 -23.7 0.55 266.1 0.55 0.23 8.199 17.87 2056.7 0.0506 0.0457 190 4.50 437.0

ODP 980 ODP (T. Chalk) -14.70 55.49 -12.5 56 0.196 12 10.45 35.39 8.771 2333.9 -22.8 0.55 266.6 0.55 0.23 8.199 17.78 2064.7 0.0495 0.0448 186 4.40 437.4

Age = 1.076ka, CO2= 279.1 ppm Interpolatedr average 11.71 35.36 8.755 2331.5 -33.0 260.9 8.206 18.02 2047.4 0.0524 0.0471 196 4.64 437.0

Interpolatedr intraannual variation 3.42 0.07 0.029 5.4 30.2 16.6 0.016 0.59 27.3 0.0046 0.0037 16 0.39 0.7

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 1 13.63 35.73 8.729 2351.6 -14.4 0.04 274.4 0.71 0.02 8.189 18.12 2055.9 0.0537 0.0481 204 4.83 441.6

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 2 13.17 35.71 8.735 2350.8 -24.2 0.04 274.0 0.71 0.02 8.190 18.06 2059.0 0.0530 0.0476 201 4.77 441.4

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 3 13.10 35.73 8.736 2352.0 -15.2 0.04 274.4 0.71 0.02 8.190 18.05 2060.8 0.0529 0.0475 201 4.76 441.6

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 4 13.41 35.71 8.732 2350.6 -23.7 0.04 274.1 0.71 0.02 8.190 18.09 2056.8 0.0534 0.0479 203 4.80 441.4

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 5 14.40 35.76 8.719 2352.8 -39.8 0.04 273.4 0.71 0.02 8.190 18.24 2049.1 0.0552 0.0492 210 4.96 442.0

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 6 16.42 35.75 8.695 2350.7 -32.7 0.04 273.7 0.71 0.02 8.189 18.49 2029.5 0.0584 0.0517 222 5.25 441.9

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 7 18.63 35.79 8.668 2350.9 -33.3 0.04 273.7 0.71 0.02 8.187 18.78 2009.2 0.0622 0.0547 236 5.59 442.4

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 8 19.81 35.80 8.654 2350.1 -17.8 0.04 274.3 0.71 0.02 8.184 18.92 1998.3 0.0642 0.0561 243 5.76 442.5

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 9 19.31 35.83 8.659 2352.5 -23.2 0.04 274.1 0.71 0.02 8.185 18.86 2004.4 0.0634 0.0555 240 5.70 442.9

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 10 17.61 35.79 8.680 2351.9 -21.2 0.04 274.2 0.71 0.02 8.187 18.64 2019.8 0.0604 0.0533 229 5.43 442.4

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 11 15.79 35.74 8.702 2350.6 -25.9 0.04 274.0 0.71 0.02 8.189 18.41 2035.4 0.0573 0.0509 218 5.15 441.7

MC577-17b Tübingen -17.40 45.57 -17.5 44 0.407 12 14.52 35.73 8.718 2351.0 -25.8 0.04 274.0 0.71 0.02 8.189 18.24 2047.1 0.0552 0.0493 210 4.97 441.6

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 1 12.40 35.57 8.745 2343.2 -17.1 0.04 274.3 0.71 0.02 8.189 17.94 2060.5 0.0516 0.0464 195 4.62 439.6

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 2 12.08 35.57 8.749 2343.3 -13.7 0.04 274.5 0.71 0.02 8.189 17.90 2063.5 0.0510 0.0460 193 4.58 439.6

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 3 12.06 35.59 8.749 2344.5 -35.4 0.04 273.6 0.71 0.02 8.190 17.91 2063.9 0.0512 0.0461 194 4.59 439.9

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 4 12.30 35.55 8.747 2342.1 -26.0 0.04 274.0 0.71 0.02 8.189 17.93 2060.3 0.0514 0.0463 195 4.61 439.4
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MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 5 13.18 35.60 8.735 2344.4 -60.2 0.04 272.6 0.71 0.02 8.191 18.07 2053.3 0.0531 0.0476 201 4.76 440.0

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 6 14.90 35.59 8.714 2342.7 -65.6 0.04 272.4 0.71 0.02 8.190 18.29 2036.5 0.0558 0.0498 211 5.01 439.9

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 7 16.87 35.61 8.690 2342.2 -22.9 0.04 274.1 0.71 0.02 8.187 18.52 2019.7 0.0588 0.0521 223 5.28 440.1

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 8 17.89 35.63 8.678 2342.4 -25.9 0.04 274.0 0.71 0.02 8.186 18.66 2010.4 0.0606 0.0534 229 5.43 440.4

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 9 17.25 35.62 8.685 2342.4 -17.3 0.04 274.3 0.71 0.02 8.186 18.57 2016.6 0.0594 0.0525 225 5.33 440.3

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 10 15.63 35.60 8.705 2342.7 -26.5 0.04 273.9 0.71 0.02 8.188 18.37 2031.2 0.0568 0.0505 215 5.10 440.0

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 11 14.05 35.51 8.725 2338.7 -20.4 0.04 274.2 0.71 0.02 8.188 18.15 2042.6 0.0540 0.0484 204 4.85 438.9

MC577-17b Tübingen -17.40 45.57 -17.5 48 0.168 12 13.06 35.58 8.737 2343.3 -22.5 0.04 274.1 0.71 0.02 8.189 18.03 2054.7 0.0526 0.0472 199 4.72 439.8

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 1 13.36 35.73 8.732 2351.8 -10.4 0.04 274.6 0.71 0.02 8.189 18.08 2058.5 0.0533 0.0478 203 4.79 441.6

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 2 12.94 35.70 8.738 2350.3 -21.3 0.04 274.1 0.71 0.02 8.190 18.03 2060.8 0.0526 0.0473 200 4.73 441.3

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 3 12.89 35.70 8.738 2350.3 -17.4 0.04 274.3 0.71 0.02 8.190 18.02 2061.4 0.0525 0.0472 200 4.72 441.3

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 4 13.17 35.68 8.735 2349.0 -23.4 0.04 274.1 0.71 0.02 8.190 18.06 2057.8 0.0530 0.0475 201 4.76 441.0

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 5 14.25 35.69 8.722 2348.9 -42.6 0.04 273.3 0.71 0.02 8.190 18.21 2047.5 0.0548 0.0490 208 4.93 441.1

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 6 16.25 35.69 8.697 2347.3 -31.3 0.04 273.7 0.71 0.02 8.188 18.46 2028.7 0.0580 0.0514 220 5.21 441.1

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 7 18.24 35.73 8.673 2347.8 -42.9 0.04 273.3 0.71 0.02 8.187 18.73 2010.4 0.0615 0.0541 233 5.52 441.6

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 8 19.43 35.72 8.659 2345.9 -12.9 0.04 274.5 0.71 0.02 8.184 18.86 1999.0 0.0633 0.0555 239 5.68 441.5

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 9 18.95 35.76 8.664 2348.8 -15.0 0.04 274.4 0.71 0.02 8.185 18.80 2005.4 0.0626 0.0549 237 5.62 442.0

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 10 17.40 35.75 8.683 2349.8 -22.7 0.04 274.1 0.71 0.02 8.187 18.61 2020.2 0.0600 0.0529 227 5.39 441.9

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 11 15.65 35.72 8.704 2349.6 -25.3 0.04 274.0 0.71 0.02 8.189 18.38 2035.9 0.0570 0.0507 216 5.13 441.5

MC577-17b Tübingen -17.40 45.57 -12.5 44 0.038 12 14.28 35.70 8.721 2349.4 -25.1 0.04 274.0 0.71 0.02 8.189 18.21 2048.2 0.0548 0.0489 208 4.92 441.3

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 1 12.10 35.54 8.749 2341.6 -10.5 0.04 274.6 0.71 0.02 8.189 17.90 2062.2 0.0510 0.0460 193 4.57 439.3

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 2 11.76 35.56 8.753 2342.9 -16.2 0.04 274.4 0.71 0.02 8.189 17.86 2065.9 0.0506 0.0456 191 4.53 439.5

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 3 11.71 35.55 8.754 2342.4 -11.0 0.04 274.6 0.71 0.02 8.189 17.85 2066.1 0.0504 0.0455 191 4.52 439.4

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 4 11.97 35.55 8.751 2342.2 -25.8 0.04 274.0 0.71 0.02 8.190 17.89 2063.3 0.0509 0.0459 193 4.56 439.4

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 5 13.00 35.56 8.738 2342.2 -52.7 0.04 272.9 0.71 0.02 8.191 18.04 2053.5 0.0527 0.0473 199 4.72 439.5

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 6 14.83 35.56 8.715 2341.0 -53.8 0.04 272.8 0.71 0.02 8.190 18.28 2036.3 0.0556 0.0496 210 4.98 439.5

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 7 16.82 35.57 8.691 2339.9 -27.6 0.04 273.9 0.71 0.02 8.187 18.52 2018.4 0.0587 0.0520 222 5.26 439.6

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 8 17.87 35.56 8.678 2338.4 -15.5 0.04 274.4 0.71 0.02 8.185 18.64 2008.1 0.0604 0.0532 228 5.41 439.5

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 9 17.25 35.57 8.686 2339.5 -15.7 0.04 274.4 0.71 0.02 8.186 18.56 2014.6 0.0593 0.0525 224 5.32 439.6

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 10 15.65 35.55 8.705 2339.8 -23.6 0.04 274.1 0.71 0.02 8.187 18.36 2029.0 0.0567 0.0504 214 5.09 439.4

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 11 14.01 35.54 8.725 2340.5 -24.2 0.04 274.0 0.71 0.02 8.188 18.15 2044.1 0.0541 0.0484 205 4.85 439.3

MC577-17b Tübingen -17.40 45.57 -12.5 40 0.033 12 12.85 35.58 8.740 2343.5 -25.4 0.04 274.0 0.71 0.02 8.189 18.01 2056.5 0.0523 0.0470 198 4.69 439.8
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n/d, Pre-ind. CO2 '275 ppm Interpolatedr average 15.32 35.70 8.709 2348.4 -26.0 274.0 8.188 18.34 2037.8 0.0565 0.0503 214 5.08 441.2

Interpolatedr intraannual variation 4.78 0.07 0.039 2.2 20.9 0.8 0.002 0.62 43.7 0.0080 0.0061 30 0.71 0.9

MC655 Tübingen 5.40 38.42 n/a n/a n/a n/a 23.230 37.382 8.605 2629 n/a n/a 321.9 1.5 0.25 8.161 19.22 2212.5 0.0641 0.0553 296 6.95 462.0

*NOTE: MC655 in the Mediterranean is not covered by Takahashi et al. (2009) dataset. Pre-industrial carbonate system from Touratier and Goyet (2011), with additional parameters from CARINA

TAN1106

/24-N8

TAN1106 -47.98 165.77 n/a n/a n/a n/a 12.51 34.70 8.746 2296.7 n/a n/a 348.2 3 0.3 8.095 17.00 2070.9 0.0412 0.0378 159 3.76 428.9

TAN1106

/40-N8

TAN1106 -49.72 165.21 n/a n/a n/a n/a 11.03 34.62 8.764 2347.3 n/a n/a 368.4 5 0.6 8.072 16.63 2087.6 0.0375 0.0346 145 3.40 427.9

TAN1106

/50-N8

TAN1106 -51.72 164.56 n/a n/a n/a n/a 9.00 34.41 8.789 2282.3 n/a n/a 380.0 2 0.7 8.056 16.28 2100.9 0.0340 0.0316 130 3.05 425.2

Table C.1: Supplementary Information to accompany Chapter 4. @ Samples from Tübingen were provided by M. Kucera, those from NIWA were
provided by H. Bostock, and those from IODP/ODP were provided by T. Chalk. TAN1106 material was collected from the TAN1106 Cruise from
NIWA in 2011. 8 The inversed sum of squares distance from the sample site to the Takahashi site (in �) § From Takahashi et al. (2009) |from regional
Salinity/Alk relationships 3 Calculated via Dickson (1990) at 10m depth from SST and Salinity. ]Derived from Gloor et al. (2003): the ratio of
average modelled values of pre-industrial CO2 flux to average modelled modern values. [Lamentably we have no data for intraannual variability and
so these values are taken from nearby measurements in the GLODAP/CARINA datasets. †Applying modified �pCO2 to pre-industrial atmospheric
CO2

rInterpolated between surrounding Takahashi datapoints by weighting the mean value to the inverse of the sum-of-squares distance from the
core sites
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Cleaning Coccolithophore Calcite for Trace Element and

Boron Isotope Analysis

As part of this PhD project, a new cleaning protocol for cultured coccolithophores was

developed, in collaboration with Dr. Heather Stoll’s working group in Oviedo, Spain.

This material presents a significant challenge, due to (i) the large amount of organic

matter present (which can lead to formation of a red substance, presumed to be iron

oxyhydroxides) and (ii) susceptibility to dissolution. Since Milli-Q de-ionised water

(hereafter MQ) is mildly acidic (pH 5), all MQ used in the following procedure was

bu↵ered to pH 9 to prevent dissolution by addition of a few drops of NH3.

Cultured coccolithophores (cultivated by Oscar Branson at the NOC as part of his

Masters thesis) were provided as dried centrifuged pellets. As such, the first step was

to crush these pellets in a clean agate pestle and mortar, and to disaggregate material

in MQ (in acid-cleaned 15ml plastic centrifuge tubes) using a vortex agitator. Samples

were then centrifuged at 1400 rpm for 5 minutes and the supernatant extracted to

waste. To each tube, 1ml of reductive reagent was added before boiling for 30 minutes.

Preliminary attempts found NH4OH-bu↵ered Hydroxylamine Hydrochloride to be an

ine↵ective reductant, and instead, following Hernandez-Sanchez et al. (2011), the

following reagent was used: 25 ml 0.15M Na-citrate + 0.5M NaHCO3 + 1.125g

Na-dithionate (Reitz et al., 2004).

Samples were then centrifuged (1400 rpm, 5 min), and the supernatant extracted to

waste, before a reagitating the sample in a further 500 µl of reductive reagent,

ultrasonicating (30 s) and subjecting to a further 30 minutes boiling. After

centrifuging and 3 MQ rinses (each time reagitating using a vortex and centrifuging),

the samples were then transferred to new acid-cleaned centrifuge tubes and rinsed

again. 1ml of oxidative solution (100 µl 30% H2O2 + 100 µl NaOH + 10 ml MQ) was

then added to each tube, with samples then boiled for 30 mins. This oxidative step

was repeated three times in total, with centrifuging, extraction of supernatant,

reagitation and ultrasonication (15s) in new oxidative reagent each time.

Samples were then centrifuged and reagitated/rinsed in bu↵ered MQ three times,

before finally centrifuging for 8 minutes, extracting supernatant and drying (overnight,

⇠ 40 �C). In some cases samples were still faintly red in colour after the full cleaning
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0.01! 0.1! 1! 10! 100!

Li/Ca (µmol/mol)!

B/Ca (µmol/mol)!

Na/Ca (mmol/mol)!

Mg/Ca (mmol/mol)!

Al/Ca (µmol/mol)!

Mn/Ca (µmol/mol)!

Sr/Ca (mmol/mol)!

Cd/Ca (µmol/mol)!

Ba/Ca (µmol/mol)!

Nd/Ca (µmol/mol)!

U/Ca (nmol/mol)!

Fe/Ca (µmol/mol)!

Element/Ca ratio!

Stonebridge Marble (1 x MQ rinse)!

Stonebridge Marble (Full Clean)!

Figure D.1: Comparison of El/Ca ratios in samples of in-house Stonebridge Marble
standard, one subject to the full coccolith cleaning protocol, and the other simply
rinsed once with MQ prior to dissolution. Note that key element ratios of potential
interest in coccolith geochemistry (e.g. B, Sr, Mg, Li), there is no discernible di↵erence
between the two samples. While the cause of di↵erences in Al/Ca is not clear, Na is
a common laboratory procedural contaminant, and consequently may be a result of

increased handling of the cleaned sample.

protocol; in these cases samples were subject to alternating reductive and oxidative

cleaning steps until fully clean. Samples were then transported back to NOCS, where

samples were reagitated in MQ, centrifuged and supernatant extracted. Samples were

then dissolved in 0.5M HNO3 for trace element and boron isotope analysis. It is also

important to note that coccoliths contain considerable quantities of interstitial organic

matter, so following dissolution further centrifuging (1400 rpm, 15 mins) is required

before sample is extracted.

To test for the possibility that this vigourous cleaning protocol might leach boron, or

fractionate boron in some way, the full cleaning protocol was applied to a sample of

in-house marble standard, with another dissolved and analysed uncleaned as a control.

No di↵erence in the trace element profiles of the cleaned and uncleaned marble was

found (see Fig. D.1), and therefore the cleaning protocol was deemed non-destructive.
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Planktonic foraminiferal area density as a proxy for carbonate
ion concentration: A calibration study using the Cariaco
Basin ocean time series
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and Katherine E. Wejnert 4
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[1] Biweekly sediment trap samples and concurrent hydrographic measurements collected
between March 2005 and October 2008 from the Cariaco Basin, Venezuela, are used to
assess the relationship between [CO3

2!] and the area densities (ρA) of two species of
planktonic foraminifera (Globigerinoides ruber (pink) and Globigerinoides sacculifer).
Calcification temperatures were calculated for each sample using species-appropriate
oxygen isotope (δ18O) temperature equations that were then compared to monthly
temperature profiles taken at the study site in order to determine calcification depth.
Ambient [CO3

2!] was determined for these calcification depths using alkalinity, pH,
temperature, salinity, and nutrient concentration measurements taken during monthly
hydrographic cruises. The ρA, which is representative of calcification efficiency, is
determined by dividing individual foraminiferal shell weights (±0.43 μg) by their associated
silhouette areas and taking the sample average. The results of this study show a strong
correlation between ρA and ambient [CO3

2!] for both G. ruber and G. sacculifer (R2 = 0.89
and 0.86, respectively), confirming that [CO3

2!] has a pronounced effect on the calcification
of these species. Though the ρA for both species reveal a highly significant ( p< 0.001)
relationship with ambient [CO3

2!], linear regression reveals that the extent to which [CO3
2!]

influences foraminiferal calcification is species specific. Hierarchical regression analyses
indicate that other environmental parameters (temperature and [PO4

3!]) do not confound the
use of G. ruber and G. sacculifer ρA as a predictor for [CO3

2!]. This study suggests that G.
ruber and G. sacculifer ρA can be used as reliable proxies for past surface ocean [CO3

2!].

Citation: Marshall, B. J., R. C. Thunell, M. J. Henehan, Y. Astor, andK. E.Wejnert (2013), Planktonic foraminiferal area
density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series,
Paleoceanography, 28, doi:10.1002/palo.20034.

1. Introduction

[2] Changes in the carbon dioxide (pCO2aq) concentration
of the oceans alter surface ocean pH and in turn seawater
carbonate ion concentrations [CO3

2!]. Over the last two
centuries, anthropogenic input of carbon into the atmosphere
and oceans has resulted in an unprecedented rapid decline in

surface ocean pH, a process referred to as ocean acidification
(OA) [Caldiera and Wickett, 2003; Honisch et al., 2012;
Zeebe, 2012]. Though the uptake of ~30% of the anthropo-
genic CO2 by the ocean has mitigated modern pCO2atm rise
[Sabine et al., 2004], the resulting decline in calcite and
aragonite saturation states has had an adverse effect on
several key marine organisms and ecosystems [Riebesell
et al., 2000; Caldiera and Wickett, 2003; Orr et al., 2005;
Hoegh-Guldberg et al., 2007, Moy et al., 2009]. With some
exceptions [Iglesias-Rodriguez et al., 2008; Ries et al.,
2009], marine calcifiers—including several species of plank-
tonic foraminifera—have exhibited reduced rates of calcification
when grown in low pH and low [CO3

2!] waters (Table 1)
[Spero et al., 1997; Bijma et al., 1999, 2002; Wolf-Gladrow
et al., 1999; Riebesell et al., 2000; Russell et al., 2004;
Lombard et al., 2010;Manno et al., 2012]. In addition to having
an adverse effect on the calcification efficiency of these
organisms, a reduction in calcification rates of marine plankton
will likely have a significant impact on the marine carbon
cycle, as calcification is a process that increases aqueous CO2
[Wolf-Gladrow et al., 1999; Zeebe and Wolf-Gladrow, 2001].
Thus, on short time scales, a decrease in calcification will result

Additional supporting information may be found in the online version of
this article.
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Table 1. Compilation of Previous Studies Assessing the Relationship Between Planktonic Foraminiferal Calculation and [CO3
2!]

Species/Study Sample Type Size Fraction(μm)
Size-Normalizing

Method
Range in

[CO3
2!](μm/kg)

Correlation With
[CO3

2!]
%Δ

[CO3
2!]200–300

Orbulina universa
Spero et al. [1997] culture – – 75–774 (699) positive 37d

Bijma et al. [1999] culture 500–600 (100) SBW 40–150 (110)b positive, R2 = 0.55 24.3
culture 500–600 (100) SBW 180–640 (460)b positive, R2 = 0.67 12.8

Russell et al. [2004] culture 427–653 (226) shell thickness 76–468 (392)b positive, R2 = 0.97 15.1
culture 427–667 (240) SBW 77–480 (404)b positive, R2 = 0.65 18.3

Lombard et al. [2010]a culture 427–667 (240) calcification rate 77–480 (404)b positive, R2 = 0.04 7.7–14.7

Globigerina bulloides
Barker and Elderfield [2002] core top 300–355 (55) MBW 206–257 (51)c positive, R2 = 0.67 155.5

core top 300–355 (55) SBW 199–264 (65)c positive, R2 = 0.31 63.9
Gonzalez-Mora et al. [2008] core 250–300 (50) SBW 150–250 (100)c positive –
Moy et al. [2009] sediment trap/core top 300–355 (55) SBW 153–189 (36)c positive 35e

sediment trap/core top 355–425 (70) SBW 153–189 (36)c positive 30e

Beer et al. [2010a] plankton net 200–250 (50) MBW 166–276 (110)c positive, R2 = 0.38 16.6
Aldridge et al. [2012] plankton net 150–200 (50) MBW 148–181 (40)c positive, R2 = 0.35 62.6

plankton net 200–250 (50) MBW 148–181 (40)c positive, R2 = 0.56 47.5

Pulleniatina obliquiloculata
Naik and Naidu [2007] core top 350–420 (70) MBW – positive –
Mekik and Raterink [2008] core top 420–520 (100) MBW 145–225 (80)b positive, R2 = 0.67 200.0

Neogloboquadrina dutertrei
Naik and Naidu [2007] core top 350–420 (70) MBW – positive –
Mekik and Raterink [2008] core top 355–415 (60) MBW 120–225 (105)b positive, R2 = 0.64 76.8

Globorotalia truncatulinoides
Barker and Elderfield [2002] core 300–355(55) SBW 216–264 (48)c positive, R2 = 0.44 38.2

Neogloboquadrina pachyderma
Barker and Elderfield [2002] core 250–300 (50) MBW 199–264 (65) positive, R2 = 0.65 53.3
Gonzalez-Mora et al. [2008] core 250–300 (50) SBW – no response –
Manno et al. [2012] culture 100–200 (100) calcification rate 60–120 (60)c positive 21–30

Globorotalia inflata
Barker and Elderfield [2002] core 300–355(55) SBW 200–268 (68)c positive, R2 = 0.77 70.7

Globogerinoides ruber
Gonzalez-Mora et al. [2008] core 250–300 (50) SBW – positive –
de Moel et al. [2009] core 250–300 (50) SBW (6.5; 18) positive 25.0f

core 300–355 (55) SBW (6.5; 18) positive 25.0f

core 250–500 (250) shell thickness (6.5; 18) positive 35.0f

Beer et al. [2010a] plankton net 200–250 (50) MBW 251–284 (33)c negative, R2 = 0.78 !88.6
plankton net 250–315 (65) MBW 261–285 (24)c negative, R2 = 0.64 !74.2
plankton net 315–355 (40) MBW 262–284 (22)c negative, R2 = 0.50 !71.5

This study (pink) sediment trap 355–650 (295) ρA 215–270 (55)b positive, R2 = 0.89 44.1
sediment trap 355–500 (145) ρA 215–270 (55)b positive, R2 = 0.73 49.6
sediment trap 500–650 (150) ρA 215–270 (55)b positive, R2 = 0.82 43.8

Globogerinoides sacculifer
Bijma et al. [2002] culture 493–575 (82) SBW 100–620 (520)b positive, R2 = 0.39 7.7

culture 582–663 (81) SBW 100–620 (520)b positive, R2 = 0.22 4.6
culture 762–845 (83) SBW 100–620 (520)b positive, R2 = 0.28 5.4

Naik and Naidu [2007] core top 350–420 (70) MBW 240–250 (10)b positive 157.7
Lombard et al. [2010]a culture 372–446 (74) calcification rate 72–566 (494)b positive, R2 = 0.03–0.07 6.3–8.1
Naik et al. [2010] core 503–699 (196) SBW 61–106 (36)c positive 32.3g

This study (no sac) sediment trap 425–800 (350) ρA 165–240 (70)b positive, R2 = 0.86 27.1
sediment trap 425–650 (225) ρA 165–240 (70)b positive, R2 = 0.79 29.1
sediment trap 650–850 (200) ρA 165–240 (70)b positive, R2 = 0.55 19.5

aThis study uses data from Russell et al. [2004] and unpublished data from R. da Rocha, A. Kuroyanagi, G. J. Reichart, and J. Bijma.
bAmbient [CO3

2!].
cSea surface [CO3

2!].
dPercent change in mass of O. universa at high [CO3

2!] (over 600 μmol/kg) relative to the mass at ambient [CO3
2!].

ePercent change in SBW from preindustrial (core top) G. bulloides to present (sediment trap) G. bulloides.
fPercent change represents the difference between the SBW from thin (younger) and thick (older) shelled populationswith 14C-derived age differences of 35–140 years.
gPercent change in SBW from 25,000 years B.P. to 1000 years B.P.
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in an increase in the ocean's ability to take up atmospheric CO2
[Feely et al., 2004], but would ultimately reduce the total flux
of calcite and organic carbon to the deep ocean over longer
time scales, which serves as a significant long-term carbon sink
[Armstrong et al., 2001;Klaas and Archer, 2002; Ridgwell and
Zeebe, 2005; Zeebe, 2012].
[3] Since planktonic foraminifera are responsible for up to

80% of the total calcium carbonate (CaCO3) accumulated in
surface sediments [Schiebel, 2002], it is important to under-
stand the extent to which their calcification will be affected
by decreasing [CO3

2!] associated with OA. The quanti-
fication of the relationship between [CO3

2!] and planktonic
foraminiferal calcification provides a useful proxy for
determining past changes in ocean carbonate chemistry, as well
as estimates of past pCO2atm. It has been shown that a positive
linear relationship exists between planktonic foraminiferal size-
normalized shell weight (SNW) and ambient [CO3

2!] [Spero
et al., 1997; Bijma et al., 1999; Barker and Elderfield, 2002].
Rates of calcification increase in conjunction with increasing
seawater [CO3

2!], resulting in a thickening of the shell wall
and an increase in mean shell weight [Spero et al., 1997;
Bijma et al., 1999; Russell et al., 2004].
[4] Culture studies have shown a decline in calcification

efficiency with decreasing [CO3
2!] for a wide variety of

foraminiferal species commonly used in paleoclimatic and
paleoceanographic reconstructions (Table 1). Most studies
of sediment core and water column material (plankton tow
and sediment trap) report a stronger influence of [CO3

2!]
on foraminiferal calcification than what has been reported
in culture studies (Table 1). It has been suggested that the
shallower slopes reported in culture studies could have been
a result of the foraminifera not having completed their entire
life cycle in culture conditions [Bijma et al., 2002].
[5] Additional differences amongst studies investigating the

influence of [CO3
2!] on foraminiferal calcification arise from

the variety of methodologies used to estimate changes in calci-
fication. While some studies estimate or measure calcification
rate or shell thickness, most studies use SNW to estimate a
change in shell thickness or density in response to changes
in [CO3

2!] (Table 1). In order to isolate the contribution of
shell thickness to weight measurements, the influence of size
on the overall weight of the foraminiferal test must be taken
into account. Prior studies have examined the relationship
between [CO3

2!] and shell weight using two general methods
for size normalization: sieve-based weight (SBW) [Broecker
and Clark, 2001;Naik et al., 2010; de Villiers, 2004] and mea-
surement-based weight (MBW) [Barker and Elderfield, 2002;
Beer et al., 2010a; Aldridge et al., 2012]. The SBW is the sim-
pler of the two methods, in which the mean bulk weights are
determined from traditionally used narrow size fractions.
The use of MBW, which is a more effective method for reduc-
ing the influence of size on weight measurements [Beer et al.,
2010b], normalizes mean bulk weights taken from narrow size
fractions using equation (1) below, where parameter refers
to either silhouette area or diameter:

MBWparameter ¼
mean SBW sample #mean parametersize fraction

mean parametersample
:

(1)

[6] Most SNW studies, regardless of the normalization
method used, reveal a positive linear relationship between

foraminiferal shell weights and [CO3
2!], although there are

significant inter and intraspecies differences (Table 1).
However, a number of studies have found contradictory
results, reporting either a negative (Globigerinoides ruber
(white)) [Beer et al., 2010a] or no relationship
(Neogloboquadrina pachyderma) [de Villiers, 2004;
Gonzalez-Mora et al., 2008] between shell weight and
[CO3

2!]. In these cases, it was suggested that other environ-
mental parameters, or more generally optimal growth condi-
tions [de Villiers, 2004], govern calcification efficiency for
these species.
[7] A temperature effect on foraminiferal calcification has

been reported in a number of studies [Bé et al., 1973;
Hecht, 1976; Hemleben et al., 1987; Schmidt et al., 2004;
Lombard et al., 2009]. These studies indicate that the size
of foraminiferal tests varies with temperature, giving an
additional reason for size normalization when using shell
weight as a proxy for [CO3

2!]. Likewise, several studies
have reported a potential relationship between SNW and
temperature [Barker and Elderfield, 2002; Beer et al.,
2010a; Aldridge et al., 2012]. However, this observed rela-
tionship between SNW and temperature can also be
explained by a [CO3

2!] effect as the two parameters covary
in surface waters. Barker and Elderfield [2002] evaluated
the influence of temperature on Globigerina bulloides SNW
by comparing shell weights across the most recent glacial-in-
terglacial transition. They found that average shell weights
were higher during the last glacial period when SST was
low and [CO3

2!] was high, concluding that [CO3
2!], not

temperature, was the dominant factor influencing calcifica-
tion rates. A recent culture study using N. pachyderma (sinis-
tral) specimens showed that the calcification rates of both
juvenile and adult specimens decreased by 30% and 21%, re-
spectively, when grown in low [CO3

2!] waters, but were un-
affected by an increase in ambient temperature while keeping
[CO3

2!] constant [Manno et al., 2012].
[8] Other authors have suggested that nutrient concentra-

tions ([PO4
3!] and [NO 3!]) may affect foraminiferal calcifi-

cation efficiency—either by enhancing calcification [Bijma
et al., 1992; Barker and Elderfield, 2002] or by hindering it
[Aldridge et al., 2012]. For example, based on a North
Atlantic plankton tow study, Aldridge et al. [2012] found that
the MBW of G. bulloides had a strong negative correlation
with [PO4

3!]. However, Aldridge et al. [2012] do not con-
sider the strong collinearity that exists between [PO4

3!]
and [CO3

2!] (R2 =!0.85). Simply put, when [PO4
3!] is in-

creasing in surface waters, [CO3
2!] is decreasing, making it

difficult to determine which environmental parameter best
explains the observed variability in G. bulloides MBW.
[9] The objective of the current study is to better quantify

the relationship between foraminiferal calcification and
[CO3

2!] by utilizing a more precise method of eliminating
the contribution of shell size to shell weight through area
density (ρA; μg/μm2) calculations. The method for deriving
ρA presented in this study uses the weight and silhouette area
of individual shells of Globigerinoides ruber (355–650 μm)
and Globigerinoides sacculifer (425–850 μm), allowing for
the use of a broad size fraction while investigating the rela-
tionship between calcification efficiency and ambient
[CO3

2!]. The Cariaco Basin, Venezuela, is an ideal study
area to investigate the relationship between seawater
[CO3

2!] and planktonic foraminiferal ρA as this region is
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characterized by the seasonal upwelling of low pH, low tem-
perature, and low [CO3

2!] waters. In this study, we use linear
regression modeling to investigate the relationships amongst
foraminiferal ρA, ambient [CO3

2!], temperature, and
[PO4

3!] at the depth of calcification.

2. The Cariaco Basin

2.1. Regional Setting
[10] The Cariaco Basin is located on the continental shelf

of northern Venezuela and is divided into two subbasins by
a 900 m saddle (Figure 1). Climatological conditions in the
basin are controlled by the seasonal migration of the
Intertropical Convergence Zone (ITCZ) and the associated
latitudinal position of the easterly trade winds. The ITCZ
is in its most southerly position during the boreal winter
and early spring (November–May). During this time, the
easterlies are positioned over the basin and generate
Ekman-induced upwelling, which results in minimum sea
surface temperatures (~22°C), maximum salinity (>36.8),
elevated nutrient concentrations, and high primary production
[Thunell et al., 2000; Muller-Karger et al., 2001; Goñi et al.,
2003]. During the summer and early fall (August–October),
the ITCZ migrates to its most northerly position; trade winds
decrease over the basin and upwelling ceases, allowing sea
surface temperatures to reach their maximum (~28–29°C),
while nutrient concentrations and primary production are
mutually diminished. The northerly position of the ITCZ over
the Cariaco Basin at this time also increases precipitation,
resulting in lower salinities in the surface waters (<36.6).
[11] The Carbon Retention in a Colored Ocean Project

(CARIACO) oceanographic time series began in November
1995 with the goal of providing a link between surface
processes and the sediment record [Muller-Karger et al.,
2000, 2001; Thunell et al., 2000; Goñi et al., 2003]. A
bottom-tethered mooring (10°30′N and 65°31′W) with
automated sediment traps at five depths (150, 230, 410,
800, and 1200 m) continuously measures the flux of settling
particles and provides biweekly samples that can be
examined and compared to monthly hydrographic data. The
samples used in this study are from the upper three sediment
traps. The planktonic foraminifera collected from these
samples display excellent preservation, with specimens
frequently having intact spines. Since its inception, the

program has collected a wide range of hydrographic data at
discrete depths throughout the water column (0–1300 m) on
a monthly basis. All hydrographic data for the Cariaco
Time Series are archived at http://www.imars.usf.edu/CAR.

2.2. The Carbonate System in the Cariaco Basin
[12] The ocean carbonate system can be quantitatively

defined by the following six parameters: total dissolved
inorganic carbon, total alkalinity (AT), pH, [CO3

2!], total
CO2 in seawater ([CO2] = [CO2(aq)] +H2CO3), and bicarbon-
ate ([HCO3!]). One can use the combination of any two of
these parameters, in combination with temperature, salinity,
pressure, and nutrient concentrations, to calculate the entire
carbonate system (see Zeebe and Wolf-Gladrow [2001] and
Zeebe [2012] for a review of the carbonate system). For our
study, pH and total alkalinity are the only two parameters
directly measured during the monthly hydrographic cruises.
The carbonate system in the Cariaco Basin is influenced by
a number of water column biogeochemical processes includ-
ing primary production and respiration, CaCO3 precipitation
and dissolution, and the remineralization and consumption of
organic matter [Astor et al., 2005]. Additionally, physical
factors such as seasonal upwelling, changes in evaporation
and precipitation ratios, advection of Caribbean waters into
the basin, air-sea gas exchange, and riverine input also
impact the carbonate system in the basin. These processes
collectively yield surface water (1 m depth) pH values that
range from 8.03 to 8.11 during the study period (March
2005 to September 2008; http://www.imars.usf.edu/CAR).
The oxidation of organic matter in the basin, coupled with
increased CO2 solubility associated with decreasing water
temperatures, causes a rapid decline in pH values with
increasing depth. These processes, in combination with a lower
average alkalinity at intermediate depths (2407 μmol/kg at 100
m versus 2418 μmol/kg at the surface), yield an average pH
value of 7.91 at 100 m depth throughout the course of the
study period.

3. Materials and Methods

3.1. Foraminiferal Collection
[13] Biweekly sediment trap samples were collected be-

tween May 2005 and September 2008 in cups containing
a buffered formalin solution, ensuring good preservation
of the foraminiferal tests. Shells of planktonic foraminif-
eral speciesG. ruber andG. sacculifer were separated from
the sediment trap samples using the settling method
described by Bé [1959]. The shells were washed, wet
sieved (>125 μm), and examined under a stereo binocular
microscope. After washing, microscopic observation of the
foraminiferal tests revealed clean surfaces, free of surficial
organic matter (OM). All G. ruber (pink) and G. sacculifer
(sac-less) individuals were wet picked and allowed to dry
(>1 week) prior to weighing in an environmentally con-
trolled weighing room. Following a 45 min oxidative
treatment (30% H2O2 with 0.1 M NH4OH) on a select
number of samples (n = 4), it was determined that differ-
ences between the pretreatment and posttreatment shell
weights were within the analytical error associated with
the weight measurements (±0.43 μg, repeat weighing of
individual Orbulina universa; n = 60). This indicates that
the settling and washing techniques were efficient in

Figure 1. Bathymetric map of the Cariaco Basin showing
the location of the sediment trap mooring (10°30′N and
65°31′W).
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removing surficial OM and that oxidative cleaning is
unnecessary for the samples used in this study. The micro-
scopic imaging program Macnification 2.0 (Orbicule, Mac
OS X Leopard) was used to sort G. ruber (355–650 μm)
and G. sacculifer (425–850 μm) into their corresponding
size fractions based on Feret's diameter (the longest dis-
tance between two points on the test).

3.2. Area Density Analysis
[14] Individual foraminiferal shells from each sample pop-

ulation were weighed using a Metler Toledo microbalance
and photographed with an inverted light microscope for size
analysis. Macnification 2.0 uses an RGB filter to determine
individual foraminiferal 2-D (silhouette) areas. Calibration
for the silhouette area and Feret's diameter measurements
was performed using a microscale image taken at the
same magnification as the foraminiferal images (50#).
Foraminiferal shells are positioned to capture the maximum
silhouette area of each individual, corresponding to the um-
bilical or spiral sides for both G. ruber and G. sacculifer.
The difference in average areas for the spiral and umbilical
orientations was determined to be negligible based on
analyses performed on sample populations of G. ruber
(n = 15, area difference between orientations is 0.15%)
and G. sacculifer (n = 12, area difference between orienta-
tions is 0.40%). The ρA (μg/μm2) is determined by dividing
individual weights by their corresponding silhouette area
and taking the sample average (n> 10, mean = 18).

3.3. Temperature Calculations and Calcification Depths
[15] Randomly selected individuals (n= 4 to 8) from each

sample population were analyzed for oxygen isotope
composition to determine calcification temperature. Oxygen
isotope analyses were performed on a GV IsoPrime stable
isotope ratio mass spectrometer (long-term standard repro-
ducibility is ±0.07‰) and are reported relative to Vienna
Pee Dee Belemnite (V-PDB). Calcification temperatures
for each sample were determined using the following
species-appropriate δ18O temperature equations:

for G. ruber [Bemis et al., 1998],

T °Cð Þ ¼ 14:90–4:80 δc–δwð Þ; (2)

and for G. sacculifer [Mulitza et al., 2003],

T °Cð Þ ¼ 14:91–4:35 δc–δwð Þ; (3)

where δc is the δ18O of the foraminiferal calcite, and δw is the
δ18O of the calcifying waters. Time-equivalent δ18Ow
estimates were established using the δ18Ow salinity equations
from McConnell et al. [2009] for the Cariaco Basin for
both upwelling (equation (4)) and nonupwelling conditions
(equation (5)):

δ18Ow ¼ 0:80 ±0:08ð Þ # salinityð Þ–28:53 ±3:0ð Þ; (4)

δ18Ow ¼ 0:27 ±0:04ð Þ # salinityð Þ–8:77 ±1:3ð Þ: (5)

[16] The δ18Ow values are scaled from SMOW to PDB by
subtracting 0.27‰ [Bemis et al., 1998]. The δ18O-derived
calcification temperatures were then compared to the mea-
sured water column temperatures to determine calcification
depths and the associated instrumental temperature, salinity,

nutrient, pH, and alkalinity needed for calculating [CO3
2!].

It should be noted that a [CO3
2!]-δc relationship has been

observed in culture studies [Spero et al., 1997]. To our knowl-
edge, no calibration of this relationship exists for eitherG. ruber
or G. sacculifer making it difficult to model this effect on the
samples used in this study. Using the Δδ18O-[CO3

2!] model
presented in King and Howard [2005], where Δδ18O is the dif-
ference between themeasured δc from the foraminiferal samples
and the predicted δc based on the instrumental temperatures, we
find that there is no correlation between [CO3

2!] and Δδ18O for
the sediment trap samples used in this study, suggesting that
[CO3

2!] is not a controlling factor for this offset.

3.4. Carbonate Parameter Calculations
[17] Monthly records of aqueous [CO3

2!] were generated
for the study site using CO2SYS.xls [Pelletier et al. 2007]
(version 16) and the constants of Lueker et al. [2000] and
Dickson [1990]. [CO3

2!] values were calculated for the
upper 130 m at discrete depth intervals (1, 7, 15, 25, 35, 55,
75, 100, and 130m) usingAT, pH, temperature, salinity, and nu-
trient concentration measurements taken during monthly hydro-
graphic cruises, and accounting for the depth (i.e., pressure) of
collection. The measurement error for [CO3

2!], calculated from
the errors associated with each carbonate parameter used for its
calculation, is less than ±1.3 μmol/kg for all the samples used in
this study. A comprehensive description of the methodologies
used to collect monthly hydrographic data in the Cariaco
Basin can be found at http://www.imars.usf.edu/CAR.
[18] Assuming an average 3 week life span for both

G. ruber and G. sacculifer [Bijma et al., 1990] and a 1 day
settling period to reach the trap depths of 150 and 410 m
(sinking speed = 300 m/day) [Takahashi and Bé, 1984], the
foraminifera collected in the biweekly sediment traps calci-
fied in waters 8 to 22 days prior to the time the trap opened
for collection. Thus, in all possible cases, we used hydro-
graphic data that fell close to or within this range of day
difference to pair with the average foraminiferal ρA.

3.5. Regression Analyses
[19] Simple, multiple, and hierarchical regression analyses

(IBM SPSS) [Miles and Shevlin, 2001] were used to
quantify the relationships between the response variable
(foraminiferal ρA) and the predictor variables ([CO3

2!],
temperature, and [PO4

3!]). Simple linear regression analy-
sis (SLR) was used to determine the bivariate relationship
between individual response and predictor variables.
Various types of multiple linear regression analyses
(MLR) were performed to examine the relationships
between ρA and the predictor variables, as well as to
examine the covariance amongst the predictor variables
themselves. Both SLR and MLR can yield unreliable
statistical outcomes for cases of multiple covarying
predictor variables—a condition called collinearity or
multicollinearity. Collinearity can be an issue in upwelling
systems such as the Cariaco Basin as it is difficult to
decouple covarying environmental variables and deter-
mine the actual amount each variable contributes to
changes in the response variable (e.g., ρA). To examine
the collinearity amongst the three predictor variables, two
types of MLR were performed. The first used each predic-
tor variable in turn as the dependent variable and the other
two predictor variables as the dependent variables (Table
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S2 in the supporting information). The coefficient of deter-
mination (R2) resulting from these multivariate regression
analyses is indicative of the amount of variance shared by
the dependent variable (one of the predictor variables) with
the independent variables (the other two predictor variables),
essentially quantifying the redundancy one predictor variable
shares with the other predictor variables. Two other collinear-
ity diagnostics, tolerance (1!R2) and variance inflation
factor (VIF; (1!R2)!1), were determined using MLR with
ρA as the dependent variable and [CO3

2!], temperature, and
[PO4

3!] as the independent variables (Table S3).
Collinearity in two or more predictor variables will inflate
the variance and standard errors associated with a regres-
sion analysis; thus, a strong R2 is the result of redundant pre-
dictor variables as opposed to a set of good independent
predictor variables. In general, tolerance values below
0.50 and VIF values above 2 are indicative of an issue with
collinearity amongst the independent variables [Miles and
Shevlin, 2001].
[20] One way the current study addresses the issue of

collinearity is by leaving the values for one predictor variable
(X1) unchanged, but removing its covariance with the other
two predictor variables (X2, X3) by regressing them on X1
and generating their residuals. For example, the residuals of
temperature and [PO4

3!] (TCres, [CO3
2!] and [PO4

3!]res,
[CO3

2!]) were quantified using equations (11) and (12) for
G. ruber and (17) and (18) for G. sacculifer from Table 2
in order to determine the predicted values for calcification
temperature and phosphate concentrations based on their re-
lationship with [CO3

2!]. The residuals were then calculated
by subtracting the predicted values from the measured
values. The residuals represent the variability in temperature
and phosphate that is unrelated to their covariance with
[CO3

2!]. By using the residuals as opposed to the original
calcification temperature and phosphate concentrations, we
are able to estimate what additional influence these
parameters have on G. ruber and G. sacculifer ρA once
[CO3

2!] has been considered. Hierarchical multiple regres-
sion analysis (HMR) was used to determine the relative
predictive capabilities of each variable for G. ruber and G.
sacculifer ρA by assessing the change in R2 (ΔR2) and the
significance of this change (p ΔR2) as each predictor variable
is added sequentially to the regression model. In addition to
the R2, ΔR2, and p ΔR2, the beta or standardized coefficient
(β) is also reported as this is indicative of the percentage of
a standard deviation (SD) that the response variable (ρA)
would change for a 1 SD change in the predictor variable
(Tables S4 and 3). Each model assumes that X1 is the
dominant predictor variable and assesses the relative
contributions of X2 and X3 while holding all previously
added variable(s) constant (Table 3). When using HMR,
each predictor variable is added to the regression equation
in an order specified by the researcher based on prior
observations or an established theory. For the first model,
we use the results of previous studies [Barker and
Elderfield, 2002; Naik et al., 2010; Manno et al., 2012] to
establish the order of the variables, using [CO3

2!] as X1 and
TCres, [CO3

2!] and [PO4
3!]res, [CO3

2!] as X2 and X3,
respectively. Models 2–4 placed the residuals of [CO3

2!]
either second or third during HMR to determine if it still con-
tributed significantly to predicting ρA once the other variables
had been considered. T
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4. Results and Discussion

4.1. Size-Fraction Relevance and Utilization
[21] A potential limiting factor in traditional SNW studies

is the requirement that samples be restricted to narrow size
fractions in an attempt to eliminate the contribution of size to
the measured weights. However, the use of narrow size frac-
tions may limit the number of foraminiferal shells per sample,
and a small sample size increases the error associated with
size-normalized weight or ρA estimations as defined by the
following error estimation equation [Beer et al., 2010a;
Aldridge et al., 2012]:

SNW or ρA error ¼ SNW or ρA # nð Þ!1 (6)

[22] A large number of individuals per sample greatly de-
crease the chances of having biased weight or ρA estimations.
In this study, shell weight and silhouette area estimates were
made for individual foraminifera as opposed to groupings of
individuals, allowing for the application of ρA analysis over a
wider size fraction (425–850 μm for G. sacculifer and 355–
650 μm for G. ruber). SLR comparing ρA to the mean
silhouette area for each sample reveals no statistically signif-
icant relationship for either species (Figure S1; R2 = 0.02,
p = ns for G. ruber; R2 = 0.00, p = ns for G. sacculifer). We
therefore conclude that the area density method used in this
study is very effective at removing the influence of G. ruber
and G. sacculifer shell size on ρA. These results support the
use of broader shell size fractions in ρA studies.
[23] A concern with using broader size fractions for ρA and

SNW analysis is that the morphology and calcification of
foraminifera can change throughout ontogeny [Bé, 1980;
Hemleben et al., 1989]. For example, during gametogenesis
and following the formation of a sac-like final chamber, G.
sacculifer secretes a calcite crust over its entire shell,
increasing the thickness of the shell by an average of 9 μm
[Bé, 1980]. In this study, only sac-less G. sacculifer
individuals were used for ρA analysis in the effort to eliminate
the complication of gametogenic calcite formation in this
species. Globigerinoides ruber does not precipitate gameto-
genic calcite [Caron et al., 1990], but it is possible that the
influence of [CO3

2!] on calcification could vary throughout
ontogeny for both G. ruber and G. sacculifer. Both field
and culture studies have shown that ontogeny, and by
extension size-fraction utilization, does not have a significant
influence onG. ruber (white) andO. universa SNW-[CO3

2!]
calibrations [Beer et al., 2010a; Bijma et al., 2002]. To test
whether the use of broader size fractions has an impact on
the calibration equations derived for ρA and [CO3

2!], we
examined the relationship between these two variables for
three different size fractions of both G. ruber (355–500,
500–650, and 355–650 μm) and G. sacculifer (425–650,
650–850, and 425–850 μm; Figure 2). We found that the
percent change in ρA that occurred with a change in
[CO3

2!] from 200 to 300 μmol/kg (%Δ[CO3
2!]200–300)

ranged from 44 to 50% for the three G. ruber size fractions
(Table 2; equations (8)–(10)) and from 20 to 29% for the
various G. sacculifer size fractions (Table 2; equations
(14)–(16)). The correlation coefficients are lower and the
ρA error higher for the narrower size fractions due to the
smaller number of individuals per sample in these size
fractions (n> 2; Figure 2). We speculate that the small

Figure 2. [CO3
2!]-ρA relationships for both G. ruber and

G. sacculifer for size fractions (a) 355–650 and 425–850 μm,
(b) 355–500 and 425–650 μm, and (c) 500–650 and
650–850 μm. Error bars represent the ρA multiplied by
the reciprocal of the number of individuals in each
sample populations. Samples with n> 2 were included
for Figures 2b and 2c in order to compare to the broader
size-fraction samples presented in Figure 2a (n ≥ 10).
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difference in ρA change between the different size frac-
tions is likely due to the difference in the number of
individuals per sample, resulting in significant errors
associated with the average ρA calculations for the
narrower size fractions. Based on these observations,
we conclude that the small range in %Δ[CO3

2!]200–300
for ρA exhibited by the different size fractions illustrates
that ontogeny does not significantly affect the relation-
ship between ρA and [CO3

2!]. The broader size fractions
(355–650 μm for G. ruber, 425–850 μm for G. sacculifer)
used in this study yield the largest number of individuals
per sample and smallest errors and are therefore optimal
for generating the calibration equations. Thus, only the
data for the broader size fractions will be considered from
here on.

4.2. Calcification Depth and Temperature Estimates
[24] Calcification temperatures derived from the δ18O

analyses for each sample were paired with the closest
time-equivalent measured water column temperatures.
The instrumental temperatures rather than the δ18O-derived

temperatures are used for the carbonate calculations and
statistical analyses in order to maintain consistency with
the rest of the hydrographic data used in this study.
Average temperatures were comparable to previously pub-
lished optimum temperatures for both G. ruber (26°C for
this study versus 27°C from Mulitza et al. [1998]) and
G. sacculifer (23°C for this study versus 22°C from Mulitza
et al. [1998]). The instrumental temperature values for the
upper 130 m for the 3 year study period, along with the
estimated calcification depths for G. ruber (black circles)
and G. sacculifer (blue diamonds) from each sediment trap
sample are shown in Figure 3a. The mean calcification depth
for G. ruber is 16 (±19) m, which is consistent with this
species living in the surface mixed layer in the Cariaco
Basin [Miro, 1971; Tedesco et al., 2007] and falls within the
previously observed depth range of 0–50 m [Hemleben
et al., 1989; Farmer et al., 2007].
[25] The estimated calcification depths for G. sacculifer

range from 15 to 100 m, with the mean being ~50 (±28) m.
These results are in line with previous depth estimates for
the species from the Cariaco Basin [Wejnert, 2011]. For

Figure 3. Contour plots of (a) temperature and (b) [CO3
2!] from March 2005 to October 2008 in the

Cariaco Basin for the upper 160 m of the water column. Calcification depths, estimated from δ18O-derived
calcification temperatures, are shown for G. ruber (black circles) and G. sacculifer (blue diamonds). Also
shown are the estimated depth ranges for each sample estimated from the instrumental and δ18O-derived
calcification temperatures (see the supporting information for more details). Optimal growth temperatures
for bothG. ruber (black line) and G. sacculifer (blue line) are also plotted [Mulitza et al., 1998] to compare
to the estimated calcification depths for both species.
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both species, calcification depth changes seasonally in
response to shifts between upwelling and nonupwelling
regimes in the basin (Figure 3a). Changes in calcification
depth are likely a response to changes in ambient water
density at depth due to transitions between upwelling and
nonupwelling regimes and to a certain extent species-
specific preferences to live at a depth characterized by
an optimal temperature, salinity, light, and/or chlorophyll
and nutrient regimes [Hemleben et al., 1989; Sautter and
Thunell, 1991; Tedesco et al., 2007].

4.3. Carbonate System Calculations
[26] The [CO3

2!] record for the upper 120 m over the
course of the study period is shown in Figure 3b, along with
the calcification depths determined for each sample popula-
tion for both species. The [CO3

2!] at the calcification depths
for G. ruber ranged between 215 and 270 μmol/kg (mean =
240 μmol/kg) throughout the study period, coinciding with
calcite saturation states (Ωcalc) ranging from 5.0 to 6.5
(mean = 5.7). [CO3

2!] and Ωcalc for G. sacculifer were on
average lower than those for G. ruber (165–240 μmol/kg,

mean [CO3
2!] = 200 μmol/kg, mean Ωcalc = 4.7), in agree-

ment with G. sacculifer's deeper depth habitat.

4.4. Carbonate, Temperature, and Phosphate Controls
on Planktonic Foraminiferal ρA
4.4.1. Results from Simple and Multiple Linear
Regression Analysis
[27] SLR revealed that the ρA for both species has a highly

significant (p< 0.001) relationship with ambient [CO3
2!]

(Table 2 and Figure 2a). SLR performed using temperature
as the predictor variable for ρA also revealed a significant
positive linear relationship (Figures 4a and 4b). In
comparison, SLR using [PO4

3!] as the predictor variable
revealed a less significant negative linear relationship
with G. ruber ρA (p< 0.05), with no significant relation-
ship between G. sacculifer ρA and [PO4

3!] (Figures 4c
and 4d). Additionally, SLR using [CO3

2!] as the predic-
tor variable and calcification temperature and [PO4

3!]
concentrations individually as the response variables
yielded significant bivariate correlation amongst these
variables, with the exception of G. sacculifer [PO4

3!]
and [CO3

2!] (Table 2 and Figure 4). Table S2 shows

Figure 4. Temperature-ρA and temperature-[CO3
2!] relationships for (a) G. ruber and (b) G. sacculifer.

Also shown are [PO4
3!]-ρA and [PO4

3!]-[CO3
2!] relationships for (c) G. ruber and (d) G. sacculifer.
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the results of the MLR using each predictor variable
interchangeably as the dependent variable, with the
other predictor variables serving as the independent
variables. For both species, [CO3

2!] and temperature
are highly redundant with the other environmental
parameters (R2 = 0.86 and 0.82 and R2 = 0.98 and 0.98
for G. ruber and G. sacculifer, respectively). MLR using
[PO4

3!] as the dependent variable and temperature and
[CO3

2!] as the independent variables reveal that [PO4
3!]

is moderately redundant with temperature and [CO3
2!]

for bothG. ruber andG. sacculifer (R2 = 0.44 and 0.26, respec-
tively). By substituting in a variable we know does not share a
statistically significant relationship with the predictor vari-
ables (i.e., mean area, R2 = 0.00, 0.01, and 0.04 and
R2 = 0.01, 0.01, and 0.05 for G. ruber and G. sacculifer
[CO3

2!], temperature, and [PO4
3!], respectively), we can

quantify the specific redundancy each predictor variable
shares with another (Table S2). This test revealed that G.
ruber temperature and [PO4

3!] are 81 and 42% redundant
with [CO3

2!] and that G. sacculifer temperature
and [PO4

3!] are 98 and 30% redundant with [CO3
2!].

[28] The tolerance and VIF statistics were less than 0.2 and
greater than 5, respectively, for both [CO3

2!] and tempera-
ture for both species, revealing a strong case for collinearity
for these variables (Table S3). Substituting in the residuals
of temperature (TCres, [CO3

2!]) and [PO4
3!] ([PO4

3!]res,
[CO3

2!]) revealed no collinearity with [CO3
2!]. For both

species, the tolerance and VIF diagnostics for [PO4
3!] did

not indicate a strong case for collinearity with the other
predictor variables. However, due its redundancy with the
other predictor variables (Table S2), [PO4

3!] is treated for
possible collinearity with [CO3

2!] or temperature in the
subsequent HMR analyses. These results suggest that
[CO3

2!] and temperature, particularly with the G. sacculifer
data, are nearly indistinguishable from one another in
regression analyses.
[29] Based on the results of these statistical analyses, we

hypothesize that the relationships exhibited between one
predictor variable and ρA could be due to its strong
collinearity with another predictor variable that serves as
the dominant predictor for ρA. This hypothesis is graphically
represented in Figure 4. Figures 4a and 4b show the relation-
ships between temperature and ρA and temperature and
[CO3

2!] for G. ruber (left) and G. sacculifer (right), while
Figures 4c and 4d illustrate the same relationships for
[PO4

3!]. The slopes of the best fit lines illustrated in each
graph cannot be directly compared as they are on different
scales. However, the correlation coefficients (R) for both
species are similar in all cases, suggesting that the relation-
ship between ρA and temperature or [PO4

3!] could be due
the collinearity of ρA with [CO3

2!].
4.4.2. Results from Hierarchical Multiple
Regression Analyses
[30] Four HMR models were run in order to determine the

relative contributions of each predictor variable to ρA. The
means, standard deviations, and number of data points (n)
for each variable used in the HMR models are included in
Table S4. The R2, the R2 change (ΔR2), the significance of
the ΔR2 (p ΔR2), and the standardized coefficient (β) for
each model are listed in Table 3. The first model uses
results from prior studies examining the dominant control
variable on foraminiferal calcification [Barker and

Elderfield, 2002; Naik et al., 2010; Manno et al., 2012]
to determine the ordering of predictor variables for HMR,
with [CO3

2!], and the residuals of calcification temperature
and [PO4

3!] based on their relationship with [CO3
2!]

(TCres, [CO3
2!] and [PO4

3!]res, [CO3
2!]) serving as X1,

X2, and X3, respectively. The R2 values from model 1 in-
dicate that [CO3

2!] accounts for 89 and 86% of the var-
iability seen in ρA for G. ruber and G. sacculifer,
respectively. For both G. ruber and G. sacculifer, ΔR2 for
the additions of TCres, [CO3

2!] and [PO4
3!]res, [CO3

2!] were
insignificant, with each accounting for ~0–2% of the variability
in ρA once [CO3

2!] was controlled for in the model.
Significantly larger β values for [CO3

2!] relative to those for
TCres, [CO3

2!] and [PO4
3!]res, [CO3

2!] indicate a strong dom-
inance of [CO3

2!] for predicting variability in ρA.
[31] The other three models were performed on both

species to test if [CO3
2!] still played a significant role in

predicting ρA when placed second or third in the ordering
of predictor variables. For the G. ruber data, the addition of
[CO3

2!] as X2 and X3 in models 2 and 4 following the addi-
tion of temperature generated a significant contribution to the
R2 of the model, while the addition of temperature as X2 and
X3 following the addition of [CO3

2!] in models 1 and 3 did
not contribute significantly to the R2 of the model.
However, the ordering of temperature and [CO3

2!] in models
1–4 for G. sacculifer did not make a significant difference in
the model output. This is likely a result of the strong—nearly
perfect—collinearity that exists between G. sacculifer
[CO3

2!] and temperature (Tables 2 and 3), thus making them
indistinguishable during HMR. The predictor variables for
G. ruber are slightly less collinear and thus provide us with
better estimates of the relative contributions of [CO3

2!] and
temperature to the variability in ρA. Taken together with the
knowledge that G. ruber temperature and [CO3

2!] are 81%
redundant, these results indicate that [CO3

2!] is the dominant
factor controlling ρA and that model 1 most accurately
reflects the relative contributions of each predictor variable.
Based on this model, we cannot say with any confidence that
either calcification temperature or [PO4

3!] has an impact on
the variability inG. ruber orG. sacculifer ρA, or by extension
calcification efficiency. We conclude that [CO3

2!] alone acts
as an excellent predictor for both G. ruber and G. sacculifer
ρA and the SLR equations reported in Table 2 (equations (7),
(8), (13), and (14)) serve as reliable calibration equations.
4.4.3. Globigerinoides ruber and Globigerinoides
sacculifer Area Density as a Proxy for [CO3

2!]
[32] The ρA of G. ruber (pink; 355–650 μm) ranged from

1.04 to 1.31# 10!4 μg/μm2 over the 3 year study period with
an average of 1.18# 10!4 μg/μm2, yielding a strong positive
linear relationship with [CO3

2!] (R2 = 0.89, p< 0.001,
Figure 2a). Globigerinoides sacculifer (425–850 μm) ρA
ranged from 1.45 to 1.81# 10!4 μg/μm2 with an average
of 1.62# 10!4 μg/μm2 and also correlated strongly with
ambient [CO3

2!] (R2 = 0.86, p< 0.001, Figure 2a). The
relationships between foraminiferal ρA and [CO3

2!] reported
in Table 2 are in line with the results of prior studies reporting
an adverse effect of reduced [CO3

2!] associated with ocean
acidification on the calcification of planktonic foraminifera
[Spero et al., 1997; Bijma et al., 1999; Barker and
Elderfield, 2002; Russell et al., 2004; Mekik and Raterink,
2008; Moy et al. 2009; Lombard et al., 2010; Manno
et al., 2012].
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[33] The slopes and y intercepts for G. ruber reported for
this study (Table 2) reveal a more sensitive relationship with
[CO3

2!] than those forG. sacculifer, with a 200 to 300 μm/kg
change in [CO3

2!] (%Δ[CO3
2!]200–300) resulting in a change

in ρA of 44% for G. ruber and 27% for G. sacculifer
(Table 1). It has been well documented that different species
of planktonic foraminifera undergo varying degrees of
isotopic fractionation and elemental incorporation during
the calcification process due to various vital effects
associated with calcification [Erez, 1978; Spero, 1992;
Wolf-Gladrow et al., 1999; Zeebe et al., 2008; Henehan
et al., 2013]. Though the ρA for G. ruber and G. sacculifer
reflects changes in ambient seawater [CO3

2!], the [CO3
2!]

at the site of calcification could vary amongst species due
to differences in both foraminiferal and symbiont vital
effects (calcification, photosynthesis, respiration) [Jorgensen
et al., 1985; Rink et al., 1998; Wolf-Gladrow et al., 1999;
Bentov et al., 2009]. Thus, when using ρA or any other
measure of shell weight as a proxy for past surface-ocean
[CO3

2!], it is necessary to use species-specific equations like
those provided in this study.
[34] An additional consideration for the use of

foraminiferal ρA as a proxy for [CO3
2!] is the extent

to which foraminifera are preserved in marine sediment
samples [Barker, 2004; Gibbs et al., 2010]. The dissolu-
tion of planktonic foraminiferal calcite due to a low
[CO3

2!] at depth would result in lower foraminiferal
ρA and complicate the use of ρA as a proxy for sur-
face-ocean [CO3

2!]. Conversely, the addition of second-
ary calcite would increase the shell thickness and hence
the ρA of foraminifera. Thus, foraminiferal specimens
should be collected from well above the lysocline for
the study region and thoroughly examined for signs of
dissolution and/or the precipitation of secondary calcite
prior to being used for ρA-[CO3

2!] reconstructions.

4.5. Comparison to Previous Studies
[35] Foraminiferal ρA cannot be directly compared to

previous studies that investigated the relationship between
foraminiferal calcification efficiency using SNW, shell
thickness measurements or calculations, or calcification rates
as the units are not the same (Table 1). Additionally, this
study differs from most other field studies in that we use
[CO3

2!] at the predicted depth of calcification rather than
surface water [CO3

2!] to generate our calibration equations.
We can compare the various shell weight proxies more
directly by examining the change in each proxy resulting
from a 200 to 300 μm/kg change in [CO3

2!]. These changes
in calcification were determined using regression equations
reported in the respective studies or regression equations
derived from digitized figures (Table 1). For studies that
did not include [CO3

2!] values, the %Δ reported in Table 1
represent either a reported %Δ in the study [Spero et al.,
1997] or a change in SBW observed over the course of a
geologic period characterized by significant changes in
surface water [CO3

2!] [Moy et al., 2009; de Moel et al.,
2009; Naik et al., 2010]. The %Δ[CO3

2!]200–300 varies
widely depending on the species studied and the proxies used.
The average %Δ[CO3

2!]200–300 reported for G. sacculifer is
32% (Table 1), which is close to the %Δ[CO3

2!]200–300
reported for this species in this study (27%), though this
percentage was derived from both culture and core studies that

vary widely in the range in [CO3
2!] and methods for deter-

mining calcification. The %Δ[CO3
2!]200–300 for G. sacculifer

reported in this study is most similar to the percent change
in G. sacculifer SBW reported in a core study spanning
25,000 years B.P. to 1000 years B.P. [Naik et al., 2010].
[36] The results from Beer et al. [2010a] are highly

inconsistent with the results for G. ruber (pink) presented
here, with Beer et al. [2010a] reporting a negative correlation
between G. ruber (white) MBW and [CO3

2!] collected from
the Arabian Sea. Recent studies have distinguished between
five different genetic types for the white variety of G. ruber
[Aurahs et al., 2011], characterized broadly by two
distinct morphotypes: sensu stricto (s.s.) and sensu lato
(s.l.) [Wang, 2000]. These morphotypes have different
depth habitats and temperature preferences, and thus
paleoceanographic and paleoclimatic studies should
distinguish between them [Hecht and Savin, 1972;
Wang, 2000; Kuroyanagi et al., 2008; Numberger
et al., 2009; Aurahs et al., 2011]. This difference in
calcification habitat, as well as the evident difference
in shell geometry (s.l. is more heavily calcified than
s.s. (J. Durrant and M. Henehan, 2013, unpublished
data)), would likely result in a significant differences
in the MBW for the two G. ruber (white) morphotypes.
The differences between the results from Beer et al.
[2010a] and the results from other SNW studies also
using G. ruber (white) collected from the Arabian Sea
[de Moel et al., 2009; Naik et al., 2010] may be due
to Beer et al. [2010a] not distinguishing between the
two morphotypes which we know to be present in this
region [de Moel et al., 2009; Aurahs et al., 2011] and
whose relative abundances may have changed as
sampling traversed upwelling and nonupwelling waters.
The use of G. ruber (pink) in the current study and
G. ruber (white) of an undetermined morphotype by
Beer et al. [2010a] makes comparisons difficult between
the two studies. Our results are closest to those reported
in de Moel et al. [2009], who used the SBW of G. ruber
(white; both morphotypes in equal distributions amongst
samples), but had a much narrower range in [CO3

2!]
compared to the current study. As this is the first study
reporting on the effect of [CO3

2!] on the calcification in
the pink variety of G. ruber, we can only state that the
%Δ[CO3

2!]200–300 reported here (44%) falls within the
range of most percent changes reported in studies using
other species (5 to 155%, with the majority between 5 and
50%). Thus, our results for the magnitude of change in ρA per
unit change in [CO3

2!] for both G. ruber and G. sacculifer
are comparable to those changes previously reported in forami-
niferal calcification-[CO3

2!] studies.

5. Conclusions

[37] The results of this study suggest that surface [CO3
2!]

is responsible for 89 and 86% of the variability in ρA for both
G. ruber (pink) andG. sacculifer, respectively, and by exten-
sion calcification efficiency, with no significant evidence that
temperature or [PO4

3!] contributes to ρA in these species.
Thus, the ρA of G. ruber and G. sacculifer should serve as a
reliable proxy for past [CO3

2!] using the species-specific
equations reported in Table 2. It is recommended that only
well-preserved foraminiferal shells with an absence of
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secondary calcite be used in down-core ρA reconstructions of
past [CO3

2!]. The ρA technique described in this study
should be particularly useful for down-core studies where
foraminiferal shell numbers are limited and the use of a broad
size range is required.
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Stephanie Köhler-Rink and Michael Kühl. The chemical microenvironment of the

symbiotic planktonic foraminifer Orbulina universa. Marine Biology Research, 1(1):

68–78, 2005. doi: 10.1080/17451000510019015. URL

http://www.informaworld.com/smpp/content~content=a713950223~db=all.

A. N. Kolmogorov. Dissipation of Energy in the Locally Isotropic Turbulence.

Proceedings of the Royal Society of London. Series A: Mathematical and Physical

Sciences, 434(1890):15–17, July 1991. ISSN 1364-5021, 1471-2946. doi:

10.1098/rspa.1991.0076. URL

http://rspa.royalsocietypublishing.org/content/434/1890/15.

Ch Körner, P. Bannister, and A. F. Mark. Altitudinal variation in stomatal

conductance, nitrogen content and leaf anatomy in di↵erent plant life forms in New

Zealand. Oecologia, 69(4):577–588, July 1986. ISSN 0029-8549, 1432-1939. doi:

10.1007/BF00410366. URL

http://link.springer.com/article/10.1007/BF00410366.

Shani Krief, Erica J. Hendy, Maoz Fine, Ruth Yam, Anders Meibom, Gavin L. Foster,

and Aldo Shemesh. Physiological and isotopic responses of scleractinian corals to

ocean acidification. Geochimica et Cosmochimica Acta, 74(17):4988–5001, September

2010. ISSN 0016-7037. doi: 10.1016/j.gca.2010.05.023. URL

http://www.sciencedirect.com/science/article/pii/S0016703710003017.

http://www.sciencedirect.com/science/article/B6V61-4KBVWX6-7/2/0977914968e89682c428c8287413063b
http://www.sciencedirect.com/science/article/B6V61-4KBVWX6-7/2/0977914968e89682c428c8287413063b
http://www.sciencedirect.com/science/article/B6V66-4VF56YJ-2/2/27630cc27f7208f1b419ad7e75bf8d0b
http://www.sciencedirect.com/science/article/B6V66-4VF56YJ-2/2/27630cc27f7208f1b419ad7e75bf8d0b
http://www.informaworld.com/smpp/content~content=a713950223~db=all
http://rspa.royalsocietypublishing.org/content/434/1890/15
http://link.springer.com/article/10.1007/BF00410366
http://www.sciencedirect.com/science/article/pii/S0016703710003017


Bibliography 304

Dick Kroon and Kate Darling. Size and upwelling control of the stable isotope

composition of Neogloboquadrina dutertrei (d’Orbigny), Globigerinoides ruber

(d’Orbigny) and Globigerina bulloides d’Orbigny; examples from the Panama Basin

and Arabian Sea. The Journal of Foraminiferal Research, 25(1):39–52, January

1995. ISSN 0096-1191,. doi: 10.2113/gsjfr.25.1.39. URL http:

//jfr.geoscienceworld.org/content/25/1/39.full.pdf+html?frame=sidebar.

Michal Kucera. Planktonic foraminifera as tracers of past oceanic environments. In

Claude Hillaire–Marcel and Anne de Vernal, editors, Proxies in Late Cenozoic

Paleoceanography, volume Volume 1 of Developments in Marine Geology, pages

213–262. Elsevier, Amsterdam, 2007. ISBN 1572-5480. URL

http://www.sciencedirect.com/science/article/pii/S1572548007010111.

Azumi Kuroyanagi and Hodaka Kawahata. Vertical distribution of living planktonic

foraminifera in the seas around Japan. Marine Micropaleontology, 53(1–2):173–196,

October 2004. ISSN 0377-8398. doi: 10.1016/j.marmicro.2004.06.001. URL

http://www.sciencedirect.com/science/article/pii/S0377839804000659.

J.R.N. Lazier and K.H. Mann. Turbulence and the di↵usive layers around small

organisms. Deep Sea Research Part A. Oceanographic Research Papers, 36(11):

1721–1733, November 1989. ISSN 0198-0149. doi: 10.1016/0198-0149(89)90068-X.

URL http://www.sciencedirect.com/science/article/pii/019801498990068X.

D. W. Lea, P. A. Martin, D. A. Chan, and H. J. Spero. Calcium uptake and

calcification rate in the planktonic foraminifer Orbulina universa. The Journal of

Foraminiferal Research, 25(1):14–23, January 1995. ISSN 0096-1191. doi:

10.2113/gsjfr.25.1.14. URL

http://jfr.geoscienceworld.org/content/25/1/14.full.pdf+html.

John J. Lee, Hugo D. Freudenthal, Victor Kossoy, and Allan Bé. Cytological
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